Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method
 
research article

A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method

Quaini, Annalisa
•
Quarteroni, Alfio  
2007
Mathematical Models and Methods in Applied Sciences

We address the numerical simulation of fluid-structure interaction problems characterized by a strong added-mass effect. We propose a semi-implicit coupling scheme based on an algebraic fractional-step method. The basic idea of a semi-implicit scheme consists in coupling implicitly the added-mass effect, while the other terms (dissipation, convection and geometrical nonlinearities) are treated explicitly. Thanks to this kind of explicit–implicit splitting, computational costs can be reduced (in comparison to fully implicit coupling algorithms) and the scheme remains stable for a wide range of discretization parameters. In this paper we derive this kind of splitting from the algebraic formulation of the coupled fluid-structure problem (after finite-element space discretization). From our knowledge, it is the first time that algebraic fractional step methods, used thus far only for fluid problems in computational domains with rigid boundaries, are applied to fluid-structure problems. In particular, for the specific semi-implicit method presented in this work, we adapt the Yosida scheme to the case of a coupled fluid-structure problem. This scheme relies on an approximate LU block factorization of the matrix obtained after the discretization in time and space of the fluid-structure system. We analyze the numerical performances of this scheme on 2D fluid-structure simulations performed with a simple 1D structure model.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

QQ_report.pdf

Access type

openaccess

Size

295.04 KB

Format

Adobe PDF

Checksum (MD5)

3ddfaaaf58d4382efa08f1f9a83fbd04

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés