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Calibration of an embedded camera for driver-assistant systems
Mario Bellino, Fŕed́eric Holzmann, Sascha Kolski, Yuri Lopez de Meneses, Jacques Jacot

Abstract— One of the main technical goals in the actual
automotive industry is to increase vehicle safety. The European
project SPARC (Secure Propulsion using Advanced Redundant
Control) is developing the next generation of trucks towards this
aim. The SPARC consortium intends to do so by providing the
truck with active security systems. Specifically, by equipping the
vehicle with different sensors, it can be made aware of its envi-
ronment, such as other vehicles, pedestrians, etc. By combining
all sensor data and processing it with internal proprioceptive
information 1, the truck can advice, warn or even override the
driver in case of non-response.

Camera systems are particularly advantageous for sensing
purposes, because they are passive sensors and provide very rich
information. Moreover, they can easily be software-reconfigured
to extract new or additional data from the input-image. Typical
information that SPARC aims to extract is the position of the
vehicle within the lane, the presence and distance of other vehicles
or obstacles, and the identification of roadsigns. In this paper, a
lane-detection algorithm will be presented and discussed.

Some of the resulting information needs to be given in world
coordinates, as opposed to image coordinates. To carry out
the necessary conversion, a previous calibration is needed. The
challenge is to determine a procedure to calibrate a camera
mounted on a truck to precisely determine the position of
obstacles situated in a 100 meter range. The two-step calibration
procedure presented here has been designed to simplify the
calibration of the mounted cameras in the truck production line.

Index Terms— Vehicle safety, calibration procedure, SPARC,
lane detection, assistant system, production line.

I. INTRODUCTION

PASSENGER SAFETY is one of the most important
axes of research in the automotive industry. This goes

beyond increasing vehicle reliability or equipping cars with
passive security systems. Indeed, a statistical investigation,
presented in [1], pointed out that 95% of accidents are due to
human behavior and only 5% to defective vehicles. Moreover,
80% of these accidents involve improper driving reaction,
speed and U-turn manoeuvre [2]. Analyses of these accident
scenarios show that more than 40% of the accidents might
have been avoided if the vehicles had been equipped with a
warning system. This level of safety could rise to 95% if the
vehicle could autonomously engage a safety driving response
in critical situations.

Therefore it is necessary to develop active security systems
capable of sensing the environment where the vehicle is
evolving and analyzing the situation in real-time. This driver-
assistance system should further be capable of interactingwith
the driver, in order to inform or warn him of a potentially

The authors are with Faculty of Engineering (STI “Sciences et Tech-
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1defining the internal state of the vehicle as mainly yaw, pitchand roll
value, speed, and acceleration but also powertrain status,etc...

dangerous situation, and to act on the powertrain and steering
to avoid the accident, should the driver not respond on time.

A. European project SPARC

The European project ”Secure Propulsion using Advanced
Redundant Control” (SPARC) aims to build the new gener-
ation of driver-assistant systems for heavy goods vehicles.
Trucks are particularly interesting for this project compared to
cars, because accidents with heavy vehicles cause more than
two times more heavy damage, nearly two times more injuries
and more than three times lethal casualties. Furthermore,
because of their driving distance, driving time and professional
use, trucks stand out as pioneers for car technologies. To prove
this principle, SPARC intends to demonstrate the scalability
of the security systems by porting the developments made on
trucks to a small passenger-car.

To achieve these aims, SPARC is based on two concurrent
developments. The first is the X-by-wire technology that
enables the steering wheel of the driver to be mechanically
disconnected from the wheels, as in the aircraft industry, the
steering column is replaced by servomotors and the driver
commands are sent through wires. This equipment has been
successfully tested in the Powertrain Equipped with Intelligent
Technologies project (PEIT, contract no.: IST-2000-28722),
and allows some automatic controls to maintain driving sta-
bility and reduce braking distance in critical situations.The
second development is the creation of a safety assistant, or
Co-Pilot, to compute and decide truck behavior. This module
is composed by the Human-Machine Interface (HMI) where
the driver chooses the direction and velocity to apply to the
truck. This information (or stimuli) can thus be characterized
by a 2-Dimensional vector. In parallel, the Co-Pilot technology
fuses all sensor information, and provides a redundant vector
which expresses the safest vehicle behavior. Finally, the safety
decision controller will generate a secure motion vector based
on both previous vectors, and send this third vector to the
powertrain in order to avoid accidents in case of driver failure
(see Fig. 1).

The Co-Pilot builds an internal representation, or map, of
the world surrounding the vehicle in order to select the best
action to be taken to follow a safe trajectory. This action isthen
encoded as aredundant vector. It is redundant because usually
the driver has taken that same action. In order to build this
internal representation of the environment, the Co-Pilot relies
on a set of sensors, such as radars, GPS or camera systems.
Indeed, no single sensor technology is capable of providing
accurate, robust information in all weather or traffic condi-
tions. Therefore, the Co-Pilot exploits the complementarity of
sensors by fusing their information.



2

Fig. 1. SPARC system diagram: The safety decision controllerreceives the
driver command through the Human-Machine Interface (HMI), andfrom the
Co-Pilot a sensor-based redundant command vector. The Co-Pilot establishes
the safety envelop of the environment by fusing the result of various sensors.
Finally, the safety controller decides which one is more reliable and acts
accordingly on the powertrain using X-by-wire technology.

B. SPARC camera system

Camera systems are particularly advantageous for sensing
purposes, because they are passive sensors and they provide
a very large volume of information. However, the amount
of information provided by the camera is too much to be
processed with traditional automotive electronic controlunits.
To this end, an embedded platform for image analysis is being
developed within the SPARC project. The goal of the vision
platform is to extract from the image the relevant information
in each situation and provide it to the Co-Pilot.

Information that has been identified as relevant for most
traffic scenarios is

• Position of the car relative to the current lane
• Lane’s width
• Curvature radius of the lane
• Position and size of obstacles and objects on lane and

immediate neighboring lanes
• Time to contact, or time that will elapse before the impact

with the objects
• Content and position of roadsigns

Some of the resulting information, such as lane width or
obstacle distance, needs to be given in world coordinates,
as opposed to image coordinates. This is necessary, either
because it only has sense in physical coordinates or because
this information has to be correlated with other sensors and
thus a common metric is needed. To carry out the necessary

conversion from image to world coordinates, a previous cali-
bration should be performed.

Thus, we will initially present the lane detection principle
and then, in section III, we will introduce a method that can
be used to calibrate the camera directly at the end of the
production line. This approach tries to minimize the effort
needed to perform the calibration process while minimizing
the measurement error. Then, the section IV will highlight the
experimental results that are obtained with such a calibration
method. Finally, a conclusion based on these results will be
presented.

II. L ANE DETECTION ALGORITHM

The task of detecting and tracking road limits or lane
marking is particularly difficult; mainly because the evolving
scene is a complex blend of elements, with a high level of
changes and variability, on which the system has no control.
To be able to avoid building a system that works only in
specific situations, which will not fulfill the SPARC objectives,
the algorithm will implement several approaches to detect the
desired lane. Thus, as described in [3], the algorithm will use
multiple hypotheses of detection which will track multiple
models of lanes. This method will then fuse the results of
all the tested models, and provide a solution with a higher
level of confidence.

Actually, several models are tested and implemented in
experimental vehicles. These models rely on the following
specific hypothesis:

• In most conventional situations, the road-side has more
color, or gray, variability than the vehicle’s lane. Thus,
analyzing the gradient variation helps to separate road
area from its side.

• The road or lane width is a quite stable value, thus the
distance between left and right lane cannot vary too much
during two consecutive images. Moreover, this value must
be contained in a given interval of possible road widths.

• If the acquisition time between two successive images
is short, then the distance between two successive road
limits detection has to be small.

• The line width can also be found by analyzing two similar
gradient peaks at a given distance. If a given width is
found, we are quite sure to have detected a road line.

• Line color can also be a reliable data. However, the user
must be aware that illumination changes can have a severe
influence on this measurement. Thus, a solution can be
found by using a relative value, between center of line
color and road color.

• As the field of view of the camera has to deal with
road perspective, the algorithm will have difficulties to
find reliable data objects that are far away. Thus, as the
density, in image plane, of objects situated far away is
big, it increases the possibility of finding a transition that
has no direct relation with the lane. Thus, the points that
are close to the top of the image must have a bigger
uncertainty than the bottom ones.

• Finally, after having estimated the road-side, it is possible
to compute the gradient of the image along this estimator.
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Fig. 3. Typical vehicles detection result. The information of surrounding
vehicle is found in the camera coordinate frame, but should be converted in
the real 3D space in order to compare the results of the camera module within
the fusion step.

The relative value of this gradient along the lane estima-
tion can help to qualify and improve the road boundary.

This last hypothesis has a severe influence on lane detection
performance. Indeed, all the other assumptions are local and
could not use the globality and continuity of the lane limits
(the improvements of such method are shown in Fig. 2).

III. C ALIBRATION PROCESS

It is not only necessary to detect the lane where the
vehicle is evolving, but also to provide quantitative information
about it. For instance, the radius of curvature is necessary
to decide if the vehicle is entering a curve too fast. Other
information, such as the distance between the truck and the
closest obstacle (Fig. 3), require the vision platform to provide
metric measurements.

This article will thus focus on the calibration of monocular
camera, which is a cheaper initial solution, and will therefor
not cover the calibration of stereo-vision systems. However,
the calibration procedure can be repeated on every isolated
camera composing a vision system.

Through calibration, we intend to relate pixel-based in-
formation read by the camera, to scene information. The
dimensional analysis of a 3D scene with a single, fixed
camera forces the user to constrain the supplementary degree
of freedom of the system. Indeed, although a point in the
scene has three degrees of freedom, the same point in the
camera has only two. In order to constrain the system, we
suppose that the road is completely flat. It is clear that this
supposition is a theoretical model of route, and that real roads
match only partially this hypothesis. Moreover, the calibration
procedure supposes the camera orientation and position to be
fixed, which is particularly false when a camera is embedded in
a truck. Indeed, the pitching of its cabin will largely modify the
position and orientation of the camera, which will increasethe
error of the dimensional estimation. Several solutions canbe
proposed to eliminate, or decrease, this behavior. The firstone
is to attach accelerometers to the cabin to estimate its actual
position. Thus, it is possible to correct the calibration ofthe
camera by taking into account the modification of its position
and orientation. A second approach could consist in estimating
the pitching of the cabin based on a model containing mainly

the steering angle, load, speed and acceleration of the vehicle.
Other solutions consist in analyzing the evolution of the
vanishing line. These methods can be used to increase the
behavior of the calibration method, but will not be further
detailed because they are not the aim of this article.

If we have to define an imaging system [4], we can say that
it collects radiation emitted or reflected by objects for future
processing. These emitted rays (particle flow, magnetic, or
acoustic wave) are projected on a sensor that is constitutedby
small sensitive surfaces. Thus, the basic concept of calibration
is to link the world coordinates of three-dimensional emitting
points with their corresponding ones in the image defined
by the sensor. Classical calibration methods take at least one
picture of a calibration pattern. This calibration patterncan
be a chessboard, a pattern of full circles, or whatever known
shapes, but the calibration method will rely on these specific
points, as the chessboard corners or the center of the circles.
The geometry of these points, expressed in the 3D world
coordinate system, has to be perfectly known, because they
will then be linked to their corresponding points in the image
frame.

A. Calibration technique overview

There are several calibration algorithms described in the
computer vision literature. They differ mostly by their scope,
precision and requirements for their application. Some algo-
rithms [5] [6] require a good initial guess of some parameters,
typically the focal length and camera geometry (as yaw, pitch
and roll angles). This implies an a-priori knowledge that has
to be given by the user. A possible solution to avoid giving
initial values, is to use a two-step method [7] where the first
run supposes a distortion-free camera model, and the second
step uses the prior result as an initial guess in order to find
the optimal solution including distortion parameters.
Other algorithms require a non-coplanar calibration pattern [8]
or two different calibration patterns [9], implying a longer
calibration procedure. [10] and [11] use at least two images
where the movement of the camera, or the calibration plane,
does not need to be known. Concerning the attainable preci-
sion, algorithms based on linear systems do not consider lens
radial distortion [12] [13]. This introduces significant errors
when working with short focal length optics. Only algorithms
with nonlinear optimization [14] can handle radial distortion.

Finally, several methods are being investigated in order to
find an optimal calibration procedure using Genetic Algo-
rithms [15], but do not require necessarily a physical model
of the optical system.

B. Calibration model

To calibrate a camera mounted on a truck the logical choice
would be to place the calibration pattern on the surface where
most measurements will be carried out: the road. However, this
is not a practical situation because road flatness is difficult to
be guaranteed, and thus, the precision of the three-dimensional
points of calibration could lead to an inaccurate model. More-
over, if the camera is also used to detect traffic signs, or other
long-range vehicles, the area covered by the calibration pattern
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Fig. 2. Lane detection without (left image) and with (right image) cumulated gradient information along the lane. Using thisglobal hypothesis, the algorithm
succeeds in situations where the contrast of one street side(left one) is not constant and the other side (right one) has no particular marking.

in the image would be very small. Indeed, although the size
of calibration pattern laid on the road could be of significant
dimension, its projection in the image plane will hardly cover
the whole sensor size. The original contribution of this project
is to use a vertical calibration plane, placed in front of the
camera and covering most of the image, and then to virtually
rotate this plane to fit the road surface (see Figs. 4 and 5).
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Fig. 4. Sketch of camera geometry with the different coordinate systems
(scene projection on the left-side of the truck).
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Fig. 5. Sketch of camera geometry with the different coordinate systems
(scene projection on the floor of the road).

The aim of this research is not to develop a new calibration
algorithm but to use an existing one to calibrate the camera

against this vertical plane, and then use simple geometry to
recover the position of objects on the road placed in front
of the vehicle. This approach is particularly advantageousfor
calibrating trucks at the end of the production line, because it
only requires a vertical plane aligned to the cabin frame.

The first step of our calibration technique will start by
calibrating the vertical plane with the vision system. As
described in sub-section III-A different procedures existand
could be used according to their performances and user’s
problem knowledge, as coplanar or non-coplanar procedure.
However, several benefits could be highlighted by using the
Tsai’s calibration [16]. Indeed, this last quoted method com-
putes the image distortion if the calibration patterns covers
a large size of the image and it needs only 7 points to
compute the calibration. Moreover, this algorithm can deal
with coplanar calibration planes and has one of the best
calibration accuracies (see [16]). The calibration procedure
extracts the following unknowns:

• Extrinsic parameters: the rotation matrix (3 by 3 matrix
with 3 unknown angles) and translation vector (3 un-
knowns), that link the camera position and orientation
to the calibration plane.

• Intrinsic parameters: focal length, radial lens distortion
(2 unknowns), and scale factor of the camera’s optical
system.

The second step of our calibration technique is to retrieve
the points located on the road by using the extrinsic parameters
of the previous calibration (see Figs. 4 and 5).

• c = O(x|c ; y|c ; z|c) describes the coordinate system of
the camera, wherex|c increases from the left side to the
right side of the image,y|c is the axis that starts from top
side to bottom, and finallyz|z is aligned with the optical
axis of the imaging system.

• p = O(x|p ; y|p ; z|p) describes the coordinate system of
the calibration plane. To perform Tsai’s [16] calibration,
z|p = 0.

• w = O(x|w ; y|w ; z|w) describes the coordinate system
of the road in the 3D world, indeed the straight road is
expressed withx|w being a constant. Moreover, a critical
hypothesis of algorithm is to define that road is perfectly
flat, i.e., z|w = 0. Without any loss of generality, the
direction defined by the origin of the coordinate systems
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w andp should be parallel toy|w, which allow to simplify
the calibration equations.

• α defines the inclination of the calibration plane with
respect to a perpendicular to the road surface.

• β defines the angle between the direction of road and the
calibration plane (see Fig. 5).

• the lengthA is the offset in the straight forward road
direction between 3D world coordinatew and calibration
plane systemp.

Thus, the coordinate system of the 3D world is assigned by
the knowledge of the calibration plane system, the anglesα

andβ, and the distanceA.

C. 3D world reconstruction after plane calibration

After having calibrated the camera against the calibration
plane using one of the method in section III-A, we can
recover the extrinsic parameters of the system. Then, it is
possible to construct the different transformations that link the
various coordinate systems. The second step is to compute the
projection of the point situated on the calibration plane tothe
road surface.

1) Coordinate transformations:Using the extrinsic para-
meters, we know explicitly

~x|c = Rpc · ~x|p + ~Tcp (1)

⇒ ~x|p = R−1

pc · ~x|c − R−1

pc · ~Tcp (2)

which describes the relationship between the camera
coordinate modelc and the calibration plane systemp. This
transformation can be summarized by a rotation matrixRpc

from coordinate systemp to c, and a translation vector~Tcp.

Following a similar approach, the relationship between the
systemsw to p can be written

~x|p = Rwp · ~x|w + ~Tpw (3)

with Rwp =





sβ −cα · cβ −sα · cβ

0 −sα cα

−cβ −cα · sβ −sα · sβ





and ~Tpw = A · (cα · cβ ; sα ; cα · sβ)
T wheresα stands for

sin(α), andcα for cos(α). Thus, the position of points situated
on the calibration plane and expressed inw coordinates is
defined by

~x|w = R−1

wp ·

(

~x|p − ~Tpw

)

(4)

whereR−1

wp = Rwp.
2) Reconstruction of road model:This problem is solved

by stating that the object positionR expressed inw, its
corresponding pointB onto the calibration plane and the
optical centerC of the camera are aligned (see Fig. 6). Thus,
using simple geometry manipulation, it is possible to extract
the estimated position of the object onto the modeled road
by the knowledge of the two other points. The projection
onto the calibration plane~xB|w is directly given by applying
successively (2) and (4). The position of the focal of the
camera had to be extracted from (2), which gives~xC|p =

−R−1

cp · ~Tpc when expressed in thep system. Thus, with

the help of (4), it is possible to extract the position of the
optical center of the camera inw, denoted~xC|w. Finally, if
the estimated position into the road model is described by
~xR|w =

(

xR|w ; yR|w ; zR|w

)T

, then

xR|w =
xB|w − xC|w

zB|w − zC|w
·
(

zR|w − zC|w

)

+ xC|w (5)

yR|w =
yB|w − yC|w

zB|w − zC|w
·
(

zR|w − zC|w

)

+ yC|w (6)

D. Camera coordinate based on 3D world measurements

This section describes the other way around. Indeed, it is
not only useful to get 3D measurements from the image plane
of the camera, but in some applications, it is needed to get the
pixel coordinates based on a 3D measurement. This is particu-
larly useful when the system has a representation of the world
in the natural coordinates, and tries to know the representation
of an object in the camera frame. Typical examples are sensor
fusion problems. Indeed, such technologies allow to exchange
information between different sensors. Thus, just like human
drivers, the fusion module can be suddenly interested in a
specific region of the environment. This ROI can then be
deeper analyzed by several sensors which, in order to achieve
such a goal, should be able to translate the information coming
from the environment to the pixel coordinates of the camera
frame.
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Fig. 6. Sketch of geometrical representation of object position R, and its
ray intersectionB with the calibration plane.

Analyzing figure 6, we are trying to find a methodology
to compute~x|c when we knowR =

(

xR|w, yR|w, zR|w

)

.
Referring to appendix I, we use equations (8), (9) and (10), in
order to get the coordinates ofB =

(

xp|w, yp|w, zp|w

)

. Then,
it is obvious thatB should be expressed in the coordinate
frame of the calibration plane, which can be easily done with
(3). Finally, the information in the coordinate system of the
camera (O(x|c ; y|c ; z|c)) can be found by using the previous
calibration technique (see section III).

E. Calibration procedure

The calibration procedure can be separated in two steps: the
initialization, and the iterative part which has to be performed
on each step. Thus, the initialization phase begins by placing a
calibration plane in front of the camera, and pre-computeR−1

wp

and − R−1

wp · ~Tpw described in equations (3) and (4). Then,
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using one of the existing calibration procedure (see section
III-A), extract the extrinsic parameter of the calibrationand
perform the computation of~xC|w using equation (4).
In order to recover the 3D position~xR|w corresponding to a
specific pixel position, apply the calibration transformation to
recover the~xB|p position on the calibration plane, which can
be converted toB = ~xB|w with (4). Finally, using equations
(5) and (6), lead to recoverR = ~xR|w.
Similarly, in order to recover the pixel position corresponding
to a given pointR = ~xR|w, then apply equations (8), (9)
and (10) in order to recoverB = ~xB|w. Note that several
elements of (10) can also be pre-computed. Then,~xB|p is
found by using (3) and finally, the reverse computation of
the chosen calibration will lead to the pixel position into the
camera image.

IV. EXPERIMENTAL RESULTS

This section presents the initial tests that have been per-
formed in order to characterize the robustness of the approach.
The different experiments depicted here use a camera placed
in a car with a vertical resolution of 400 pixels, positionedat
a height of1.15 m and where the calibration plane has been
placed withβ ∼= 90o andA = 1.148 m.

The calibration process has been done using the coplanar
algorithm of [16], on a target of three by five patterns. These
15 points are used to calibrate the camera, and hence to find
its intrinsic and extrinsic parameters. In order to correctthe
radial distortion, the calibration target covers the wholeimage
taken by the camera. The focal length was of6.49 mm and
the orientation ofc has an angle of8o aroundx|c.

After having performed the calibration, we moved a vertical
test target of40 cm per40 cm between2.8 and11.5 m along
the road directiony|w. The distance has been measured with
a laser that has a precision of±2 mm, and a repeatability of
95%. Then, the computational procedure described in section
III has been applied.

The results are summarized in figure 7, which shows that
the factorα has a severe influence on results. Indeed, if the
calibration plane is supposed to haveα = 0o, we can see
that the relative estimation error seems to rapidly explode
(more than55% of error for an object placed at11.5 m). A
negative error stands when the calibration result underestimate
the correct measurment; similarly, a positive error on figure 7,
describes a calibration result that is greater or equal to the
real measurment. Replacingα by −1.3o results in a mean
error of−2% when computed on the whole range of measured
distance. Moreover, by settingα = −3.0o, the relative error
tends to be quite constant.

As shown in figure 8, by subtracting the mean of measure-
ments error (withα = −3o), the precision reaches less than
±1% in the distance range of[2.8 m; 11.5 m]. This method
requires several measurements to be able to compute the mean
of experiments. An alternative solution is to average the errors
at the range limits. In this case the maximum relative error was
found to be1.4%.

Similarly, another experiment has been conducted in order
to increase the measurement range. In this second case, the

2 4 6 8 10 12
−20

−10

0

10

20

30

40

50

60

Measured distance [m]

E
rr

or
 o

f m
ea

su
rm

en
t [

%
]

 

 
Algorithm results (α = 0°)
Algorithm with α = −1.3°
Algorithm with α = −3.0°
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model. By supposing a perfect verticality of calibration plane (α = 0o),
the reader can see that an error of more than55% at 11.5 m could take
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Fig. 8. Relative error results of calibration method forα = −3o with
suppression of relative error offset.

result are presented in figure 9. It shows that this experiment
exhibits less than1.4% of error in the range of[4.3 m; 49.7 m].
This last peformance should be taken really carefully. Indeed,
as previously described, the target object used to measure
the distance has a square dimension of about40 cm which
could be considered as big when seen at a distance of4.3 m.
However, the same object seen by the camera at a distance of
49.7 m is represented by only about4 pixels! The problem
is then not the precision of the calibration technique, but
how precisely it is possible to determine the target with so
few pixels. However, the goal of this experiment is not to
caracterize the calibration procedure, because it is an exact
mathematical development, and thus have the same character-
istics of the calibration method used (in this experiment itis
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Tsai’s algorithm [16]). But rather, to extract the result ofa
practical calibration technique which could be easily applied
at the end of a production line.
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Fig. 9. Result of calibration method for the second experimental measure-
ment. This data set has been calibrated with an angleα = −7.05o, and
the results are displayed as explained in chapter IV with suppression of the
relative error offset.

A. Calibration improvement

As it was exposed by experimental analysis, the measure-
ment of the angleα is a critical step for calibration result.
It was observed in experimental results (see Fig. 7), that
the relative error of measurement whenα = −3.0o has an
important offset. After the initial investigations, it could be
pointed out that this bias was partially due to an inaccurate
estimation in the camera position. Indeed, the procedure used
to calibratep to the camera coordinate systemc, presents an
average measurement error of about13%. Moreover, further
experiments show that the initial position of the calibration
plane has also a severe influence on this bias. However, we will
now present two procedures to find and suppress this offset:

• In the production process, the position of truck and cali-
bration plane is perfectly mastered. Thus, the knowledge
of angle theα can be measured with a precision of less
than0.05o. In this case, the environment can be changed
to fit the requirement of the calibration method.

• For experimental tests, the method consists in a two-
step calibration process. The first step has been described
in the previous section and will use the most precise
measure, of the critical angleα. This measure will largely
depend on the tool that will be used to determine the
inclination of calibration plane. However, this measure-
ment does not need to be extremely precise, because the
second step of the calibration will be used to determine it
much more accurately. Indeed, after the first calibration,
we measure the distance to two objects, one situated in a
close range, for example3 m, and a second one in a far
range40 m. Having these two measurements, it is now
possible to determine experimentally the angleα to fit

precisely these distances.
Otherwise, if it is possible to guarantee that the deviation
of the anglesα andβ from their default value are small,
then it is possible to compute their estimated value by
using equations (13) and (14) of appendix II.

Both methods, not only allow to find the optimalα, but
they can determine the correction factor that could be applied
to correct the shift in the estimation error.

B. Parameters analysis

The calibration procedure of this article has three main
parameters, which areα, β and A (see Figs. 4 and 5 and
section III-B). However, the results only describe the influence
of α on the calibration. This can be explained because this
angle is certainly difficult to measure, but also because it has
the bigger impact on the calibration results for a longitudinal
measurement (alongy|w). Indeed, looking at equation (6) and
(4), it can be shown thatβ has a smaller influence thatα on
y|w. In order to validate this statement, we can observe the
error measurements when varying independently these angles.

As seen in Fig. 10, the variation of relative error ofy|w is
much less important whenβ varies from80o to 100o, than
whenα varies from−8o to −4o (see Fig. 11).

V. CONCLUSION

The SPARC project develops new technologies to improve
drivers’ security in the next generation of commercial vehicles.
It states that there is no sensor from which it is possible to
extract a sufficient amount of information to protect the driver
in every situation that can occur on roads. Thus, different
sensors based on different physical principles are fused to
reconstruct the 3D scene of the truck’s environment. This
fusion has two advantages, the first one is to be quite robust if a
single sensor become defective. Moreover, by fusing different
data types, it is possible to obtain more robust and precise
information.

One of these sensors is a camera that is connected to a
vision platform that will extract the more useful information to
achieve the security goal of SPARC. In this paper, we rapidly
describe an algorithm to perform lane detection. The approach
is based on a multiple lane models and multiple hypotheses
of detection.

Based on these results, it is now necessary to determine the
position of objects and obstacles on the road. For that, it is
needed to relate the pixel-based information of the camera to
the 3D scene. This calibration process will also be useful for
other algorithms, such as computation of lane curvature and
width. This article presents a calibration method that can be
used at the end of production line. Instead of performing the
calibration directly on the road surface, which is particularly
difficult to realize for space and cost reasons, this method
performs the calibration on a vertical plane set in front of
the truck. We present the transformation that can be applied
to compute the calibration, and present the results of a car
calibration. These results show that the verticality (α) of
the calibration plane is a critical parameter. Two solutions
have been proposed, the first one is to control perfectly this
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Fig. 10. Relative error measurement ofy|w whenβ ∈ [80o; 100o].
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Fig. 11. Relative error measurement ofy|w when α ∈ [−8o;−4o]. The
results have been truncated to a maximal error of 100% in order to improve
lisibility.

angle with a precision of less than0.05o. However, should
the measurement ofα be difficult, a second method was
proposed which does not require to know the exact inclination
of calibration plane.

Finally, the results show that a precision of less than±1%
in the range of[2.8 m; 11.5 m] can be obtained with an
extremenly simple setup, and less than±1.4% in the range
[4.3 m; 49.7 m].

APPENDIX I
PROOF OF THE REVERSE COMPUTATION

It could be essential to be able to reconstruct the image
position based on a known point in the world coordinate frame.
To achieve this goal, we have to first find the intersection of
the light ray linking the desired pointR to the cameraC
and the projection plane (see Fig. 6). Then, using the reverse
formula of the chosen calibration technique, it is possibleto
get the image coordinates of the given point. Initially we have
to characterize the calibration plane in the world coordinate.
By definition, a plane can be modeled with its normal vector
~n, and a point placed on it. By using equation (4) and
setting ~x|p = (0 ; 0 ; 1)

T, which is expressed in the plane
coordinate and is by definition orthogonal to the calibration
plane, we get~n|w = (−cβ ; −cα · sβ ; −sα · sβ)

T. Thus, we
can extract a possible representation of the calibration plane in
the world coordinate which passes through the specific point
(0 ; A ; 0)|w :

cβ · x|w + cα · sβ · y|w + sα · sβ · z|w − cα · sβ · A = 0 (7)

If the coordinatezR|w is different fromzC|w, which implies
that the pointsR and C have different heights in the world
coordinatew, then the intersection between the object seen by
the camera and the calibration plane, can be found by isolating

xB|w andyB|w from equation (5) and (6):

xB|w =
xR|w − xC|w

zR|w − zC|w
·
(

zB|w − zC|w

)

+ xC|w (8)

yB|w =
yR|w − yC|w

zR|w − zC|w
·
(

zB|w − zC|w

)

+ yC|w (9)

and replace them in the equation (7) of the calibration plane,
which gives the last unknow parameterzB|w.

Thus, the light ray starting from the observed object to
the camera, intersects the calibration plane in the point
B =

(

xB|w, yB|w, zB|w

)

when expressed in world coordinate,
wherexB|w is given by equation(8),yB|w by (9) and finally,
zB|w is obtained with equation (10).

APPENDIX II
CALIBRATION PLANE INCLINATION COMPUTATION

In order to test the inclination of calibration plane, we will
provide a control formula. Thus, knowing the exact position
of a point R =

(

xR|w, yR|w, zR|w

)

in the world coordinate
system, and its corresponding point in the image coordinate,
it is possible to determine the anglesα andβ.

Starting from the image coordinate system, and using the
selected calibration technique (for example Tsai’s), it ispos-
sible to get the corresponding pointB =

(

xB|w, yB|w, zB|w

)

.
Moreover, it is easy to have the position of the camera
C =

(

xC|w, yC|w, zC|w

)

, which is an extrinsic parameter of
the calibration procedure. As the pointsB andC are naturally
expressed in the coordinate system of the calibration plane, we
will transformR|w in R|p by using the equation (3). Applying
this transformation, the pointR|p will let appear the anglesα
and β which are the unknown. Stating that the three points
(R, B and C) are on a straight line, we get the following
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zB|w =

�
cα · sβ · (A − yC|w) − cβ · xC|w

�
·
�
zR|w − zC|w

�
+ cβ · zC|w ·

�
xR|w − xC|w

�
+ cα · sβ · zC|w ·

�
yR|w − yC|w

�
cβ ·

�
xR|w − xC|w

�
+ cα · sβ ·

�
yR|w − yC|w

�
+ sα · sβ ·

�
zR|w − zC|w

�
=

0� zC|w · cβ
zC|w · cα · sβ�

A − yC|w

�
· cα · sβ − xC|w · cβ

1A ·
�
~xR|w − ~xC|w

�0� cβ
cα · sβ
sα · sβ

1A ·
�
~xR|w − ~xC|w

� (10)

conditions:
(

xB|p − xR|p

)

(

zB|p − zR|p

) =

(

xC|p − xB|p

)

(

zC|p − zB|p

) (11)

(

yB|p − yR|p

)

(

zB|p − zR|p

) =

(

yC|p − yB|p

)

(

zC|p − zB|p

) (12)

In order to simplify the resolution of the above equations,
the angleα is approximated with a limited development of
first order around0 rad which givescα → 1, sα → α and
similarly, a small angle approximation onβ around π

2
rad

leads to replacecβ →
π
2
− β and sβ → 1 in the last set of

conditions. With some simple, but fastidious, computations,
one can find that the angleα is approximated by equation
(13), andβ is obtained from equation (14). This approximation
is the general solution of the equation system, but several
particular solutions exist and could lead to simpler solutions,
as example forzR|w = 0.
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α ∼=
γ + δ + 2 · zR|w ·

�
(yB|p − yC|p) · yR|w + A · (yC|p − yB|p)

�
∓

√
η

2 · zR|w ·
�
(A − yR|w) · (zC|p − zB|p) + (yC|p − yB|p) · zR|w

� (13)
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√
η
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(14)

γ = (xB|p − xC|p) · xR|w · yR|w + (y2

R|w + A
2) · (zC|p − zB|p) + A ·

�
(xC|p − xB|p) · xR|w + (zB|p − zC|p) · 2 · yR|w

�
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· · ·
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�
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�
· zR|w − (zC|p − zB|p) · z2

R|w

�
2

· · ·

−4 · zR|w ·
�
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�
·
�
(x2
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