
1

Accelerating Distributed Consensus Using
Extrapolation

Effrosyni Kokiopoulou and Pascal Frossard
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Institute (ITS)
CH- 1015 Lausanne, Switzerland

Phone: +41 21 693 5655
{effrosyni.kokiopoulou,pascal.frossard}@epfl.ch

Abstract— In the past few years, the problem of distributed
consensus has received a lot of attention, particularly in the
framework of ad hoc sensor networks. Most methods proposed
in the literature attack this problem by distributed linear itera-
tive algorithms, with asymptotic convergence of the consensus
solution. In this paper, we propose the use of extrapolation
methods in order to accelerate distributed linear iterations. The
extrapolation methods are guaranteed to converge in a finite
number of steps, upper bounded by the number of sensors. In
particular, we show that the Scalar Epsilon Algorithm (SEA)
can accelerate vector sequences produced by distributed linear
iterations, with no communication overhead and without knowl-
edge of the full network topology. We provide simulation results
that demonstrate the validity and effectiveness of the proposed
scheme.

Index Terms— Distributed Linear Iterations, Average
Consensus, Extrapolation, Sensor Networks

EDICS Category: COM-NETW.

I. INTRODUCTION AND MOTIVATION

We consider the problem of accelerating distributed linear
iterations that has become recently particularly interesting in
the context of ad hoc sensor networks. We model the network
as an undirected graph G = (V, E) with nodes V = {1, . . . , n}
corresponding to sensors. An edge (i, j) ∈ E is drawn if and
only if sensor i can communicate with sensor j. We denote
the set of neighbors for node i as Ni = {j| (i, j) ∈ E}.

Initially, each sensor i reports a scalar value x0(i) ∈ R.
We denote by x0 = [x0(1), . . . , x0(n)]> ∈ Rn the vector of
initial values on the network. We consider distributed linear
iterations of the form

xt+1(i) = Wiixt(i) +
∑

j∈Ni

Wijxt(j) + z(i), (1)

for i = 1, . . . , n, where xt(j) represents the value computed
by sensor j at iteration t. The parameters Wij denote the edge
weights of G and Wij = 0 when (i, j) /∈ E , which implies that
each sensor communicates only with its direct neighbors. We
assume that the term z(i) is constant (e.g., it could be a bias
term). The above iteration can be compactly written in the
following form

xt+1 = Wxt + z. (2)

This work has been partly supported by the Swiss National Science
Foundation, under grant NCCR IM2.

The sequence {xt} is defined as the vector sequence, and
the matrix W that gathers the edge weights Wij is called
the sequence generator. Under the assumption that the system
given in Eq. (2) has a fixed point s ∈ Rn, we are interested in
the problem of computing s with a small number of iterations,
and low communication among sensors.

We propose to accelerate the convergence rate of the dis-
tributed linear problem given in Eq. (2) by extrapolation [2].
Note that the problem of accelerating vector sequences was
well studied in the 60’s and 70’s and it has resulted in a
series of effective extrapolation methods like the minimum
polynomial extrapolation (MPE) [3] and the scalar epsilon
algorithm (SEA) [1]. These methods do not require explicit
knowledge of the sequence generator and they act directly on
the terms of the vector sequence. They assume first that the
sequence has a fixed point s and exploit the fact that s is
expressed as a linear combination of a few consecutive terms
of the sequence. Second, the matrix W is considered to be
fixed, which corresponds to a static network topology (albeit
unknown). We investigate the applicability of the extrapolation
methods in the framework of distributed sensor networks and
we show that SEA is the most attractive, since it requires no
communication overhead at all. It is important to note that the
proposed methodology stays generic and may be applied to
any kind of distributed linear iteration of the form of Eq. (2).

Extrapolation methods represent a completely different
line of thought, compared to state-of-the-art solutions for
distributed consensus problems. For example, the particular
distributed averaging problem has attracted a lot of research
efforts recently (e.g., [5], [6], [7], [8] and references therein),
as it presents many applications on distributed estimation and
on coordination of networks of autonomous agents. The main
research directions generally consists in computing the optimal
weights of the matrix W that will yield the fastest convergence
rate for the iterative problem given in Eq. (2) (under some
constraints on W and z = 0). Extrapolation methods represent
a novel solution to distributed linear iteration problems with
faster convergence and low communication costs, and do
not require sophisticated methods for the choice of efficient
weights in consensus averaging. We demonstrate the benefits
of extrapolation methods in the case of distributed averaging
with simulations of random sensor networks.

2

II. EXTRAPOLATION OF DISTRIBUTED LINEAR ITERATIONS

A. Extrapolation methods

We propose to accelerate the linear iteration (2) by ex-
trapolation (see [2] and references therein). There are several
extrapolation methods in the literature such as MPE, SEA,
reduced rank extrapolation (RRE) [4], and the vector epsilon
algorithm (VEA) [1]. The extrapolation methods are generally
based on first- and second-order differences between consecu-
tive terms of the vector sequence. For notational convenience,
let us define

ut = ∆xt = xt+1 − xt (3)

as well as the induced matrix

U = Ut = [u0, u1, . . . , ut−1]. (4)

Notice that
ut+1 = Wut = W t+1u0. (5)

The minimal polynomial p of a matrix W ∈ Rn×n with
respect to a vector y, is the monic1 polynomial in W of
smallest degree k, such that

p(W)y =
k∑

i=0

ciW
iy = 0,

where the cj’s, the coefficients of p. The degree k of the
minimal polynomial p is called the grade of y with respect to
W [9, ch.6]. Denote by

p(λ) =
k∑

j=0

cjλ
j , ck = 1, (6)

the minimal polynomial of W with respect to u0. All extrapo-
lation methods make use of the following theorem, which we
reproduce here for convenience.

Theorem 1: ([2]) For any k + 1 consecutive terms of the
sequence starting from m, say xm, xm+1, . . . , xm+k, it holds
that

k∑

j=0

cjxm+j = (
k∑

j=0

cj)s. (7)

According to Theorem 1, the fixed point of iteration (2)
is a linear combination of any k + 1 consecutive terms of
the sequence. It means that the extrapolation methods can
be applied in a straightforward manner to distributed linear
iteration problems.

The polynomial methods (e.g., MPE and RRE) represent
well-known solutions to calculate the coefficients cj’s and
eventually the fixed point s, according to the above theorem.
For instance, in MPE, the computation of cj’s is achieved
through the solution of a small k× k linear system, involving
the matrix U , which is row-distributed among the sensors. One
approach to work around this problem is to flood U among
the sensors, but this involves much more communication
cost than flooding the initial sensor values themselves. Since
polynomial methods require a large amount of communication

1When the leading (highest degree) coefficient is 1, the polynomial is called
monic.

Algorithm: Epsilon Algorithm
Input: Scalar sequence {xt}T−1

t=0 .
Output: Epsilon array.
1. Initialization: ε

(t)
−1 = 0, ε

(t)
0 = xt, t = 0, 1, 2, . . . , T − 1

2.1. for k = 0, 1, 2, . . .
2.2. for t = 0, 1, 2, . . . , T − k − 2

ε
(t)
k+1 = ε

(t+1)
k−1 + [ε

(t+1)
k − ε

(t)
k]−1

2.3 end
2.4 end

TABLE I
THE EPSILON ALGORITHM.

between sensors, due to the solution of a linear system, they
are not amenable to distributed linear iterations in ad hoc
networks. Therefore, we propose to use epsilon algorithms for
extrapolation, which are described in details in the rest of this
section.

B. Epsilon algorithms

The epsilon algorithms are based on the recursive compu-
tation of a triangular array, which is called the epsilon array.
Each entry in the array is computed by three earlier ones by
very simple arithmetic, which is ideal for sensor networks. For
scalar sequences (n = 1), the e-transform is defined as

ek(xt) =

det




xt xt+1 . . . xt+k
∆xt ∆xt+1 . . . ∆xt+k

.

.
∆xt+k−1 ∆xt+k . . . ∆xt+2k−1




det




1 1 . . . 1
∆xt ∆xt+1 . . . ∆xt+k

.

.
∆xt+k−1 ∆xt+k . . . ∆xt+2k−1




. (8)

It is known that the e-transform gives the exact limit s (i.e.,
ek(xt) = s, when k is the degree of p) of any scalar sequence
xt whose errors satisfy

xt − s =
k∑

i=1

αiλ
t
i , (9)

where αi and λi are fixed scalars. The same condition applies
for vector sequences (n > 1), where the αi’s become fixed
vectors. It can be shown (see [2, p.208] for more details)
that linear iterations of the form of Eq. (2) satisfy the above
condition.

Evaluating the e-transform by direct application of Eq. (8)
would be of little practical use (even for scalar sequences)
due to the computation of large determinants. However, P.
Wynn [1] discovered “with a remarkable burst of insight”
[2] that the ratio of the determinants can be evaluated recur-
sively without explicitly evaluating them and without matrix
inversion. The resulting algorithm is called the scalar epsilon
algorithm (EA), and can be compactly written as the following
recursion,

ε
(t)
−1 = 0, ε

(t)
0 = xt, t ≥ 0 (10)

ε
(t)
k+1 = ε

(t+1)
k−1 + [ε(t+1)

k − ε
(t)
k]−1, k ≥ 0, t ≥ 0. (11)

It is exactly the above recursion that made the epsilon
algorithm a practical method for the acceleration of scalar

3

Fig. 1. The triangular form of the epsilon array.

sequences who satisfy the condition given in Eq. (9). The main
steps of the epsilon algorithm are given in Table I, where T
denotes the total number of available terms from the scalar
sequence {xt}. The notation ε

(t)
k denotes the entry of the

epsilon array located in the t-th row and k-th column. Figure
1 depicts the triangular form of the epsilon-array and shows
the entries that participate in the update of ε

(t)
k+1, as well as

their relative positions. Observe that during initialization the
terms of the scalar sequence x0, . . . , xT−1 are positioned in
the first column of the array (see step 1 of the Algorithm).

Concerning the performance of the epsilon algorithm we
have the following theorem.

Theorem 2: (P. Wynn [1]) For each pair of nonnegative
integers k and t, if the indicated quantities exist,

ε
(t)
2k = ek(xt), ε

(t)
2k+1 = 1/ek(∆xt). (12)

In particular, the even numbered columns of the epsilon array
evaluate the e-transform (8). Moreover, if {xt} satisfies (9) for
some k, then it holds that ε

(t)
2k = s, ∀t.

C. Epsilon algorithms for vector sequences

The epsilon algorithm presented above refers to scalar
sequences xt. Extending the algorithm to the case of vector
sequences, calls for an appropriate interpretation of the inverse
in Eq. (11). One approach is to interpret this inverse as the
Samelson inverse

w−1 = w/‖w‖2.
It yields the Vector Epsilon Algorithm (VEA) [1]. However,
this version requires the knowledge of ‖w‖ which again needs
a small amount of communication among the sensors. A better
approach is to consider the sequence of the i-th entries of the
vector sequence, as an independent scalar sequence, so that
the inverse in Eq. (11) can be interpreted as the reciprocal.
This approach, when applied to vector sequences, is called
the scalar epsilon algorithm (SEA) [1]. It is particularly in-
teresting for sensor networks, since the i-th sensor’s sequence
terms are considered as an independent scalar sequence, which
avoids any communication overhead. Interestingly, SEA works
as good as the VEA algorithm in many cases [2], although it
ignores the interdependencies among the different components
of the vector sequence.

It is important to note that the parameter k does not need
to be known a priori in practical cases, since the epsilon

algorithm can be implemented incrementally. Adding a new
term will add one more diagonal in the triangular epsilon
array. Since k is the degree of the minimal polynomial of
W , an upper bound of k is n, which is the total number of
sensors in the network. Thus, the epsilon algorithm applied to
scalar sequences is guaranteed to converge in a finite number
of steps k, which is equal to n in the worst case. Since, SEA
is a natural extension of it to the vector case, we expect a
similar performance.

III. DISTRIBUTED AVERAGING

A typical problem in distributed linear iterations is the
distributed averaging problem, which is quite popular in ad
hoc networks. Given the initial values x0 of the sensors,
the problem of distributed averaging amounts to computing
in a distributed fashion, their average x̄0 in each sensor.
The distributed averaging problem is a special case of the
distributed linear iteration (2), where z = 0 and the matrix W
satisfies

lim
t→∞

W t =
11>

n
. (13)

Notice that in this case,

lim
t→∞

xt = lim
t→∞

W tx0 = x̄01 = (
1
n

n∑

i=1

x0(i))1. (14)

In words, after convergence, the sensors share the mean value
of their initial values x0. To the best of our knowledge, all
research efforts so far have focused on constructing the optimal
weight matrix W , which will yield the fastest convergence of
the linear iteration problem. For example, when d(i) denotes
the degree of the i-th sensor, it has been shown in [6] that
iterating with the following matrices leads to convergence to
x̄0.
• Maximum-degree weights. The maximum-degree weight

matrix is

Wij =





1
n if (i, j) ∈ E ,

1− d(i)
n i = j,

0 otherwise.
(15)

• Metropolis weights. The Metropolis weight matrix is

Wij =





1
1+max{d(i),d(j)} if (i, j) ∈ E ,

1−∑
(i,k)∈E Wik i = j,

0 otherwise.

(16)

Alternatively, the work in [8] proposes three new algorithms
for the distributed averaging problem where the dynamic
topology algorithm has polynomial-time bound on the conver-
gence time. The problem of determining the optimal matrix
W is closely connected to the problem of finding the fastest
mixing Markov chain on a graph, and can be formulated as a
semidefinite program (SDP) [5].

We propose here a novel approach to the distributed averag-
ing problem, and apply the SEA algorithm where each sensor
i :

1) Computes the i-th entries of the vector sequence
x0, . . . , xT−1, by communicating only with its neigh-
bors.

4

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Sensor network

(a) Sensor network

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

||x
 −

 µ
 ||

2

MAX−DEG
METR
SEA+maxdeg
SEA+metr

(b) Convergence rate

Fig. 2. Simulation results on a sensor network with n = 30 sensors.

2) Applies the epsilon algorithm on its own scalar se-
quence, as described in Table I.

3) Picks the successive estimates of x̄0 in the leading entry
of the even columns of the epsilon array.

Note that, at each step, the epsilon algorithm uses only three
columns of the epsilon array. The memory requirements of the
SEA algorithm are therefore limited to O(T), where T is the
total number of available terms in the sequence. However, in
the extreme case the storage requirement could be as high as
O(n).

A. Simulation Results

We apply SEA algorithms to distributed averaging prob-
lems, and we compare its performance with state-of-the-art
algorithms. We use a randomly generated sensor network with
n = 30 nodes, uniformly distributed on the area [0, 3]× [0, 3]
(see Figure 2(a)). For the construction of the graph, we
consider two nearby nodes to be neighbors, if their Euclidean
distance is smaller than r, where r = 1. The initial values
x0(i) of the sensors are uniformly distributed in [0, 1]. We
compare the proposed scheme to the convergence rate of
the classical distributed averaging iterative method using the
matrix W , with both max-degree weights (15) and Metropolis
weights (16). We combine SEA with both max-degree and

Metropolis weights. Figure 2(b) shows the simulated results,
where “MAX-DEG” and “METR” denote the iterative method
with max-degree and Metropolis weights respectively, and
“SEA+maxdeg” and “SEA+metr” denote SEA with the corre-
sponding weights. We test the SEA algorithms with increasing
number of terms up to 2n, since k cannot exceed n and
therefore the size of the epsilon array should be at most 2n (see
Theorem 2). We run the iterative methods up to a maximum
number of iterations, which was set to 100. In the vertical axis,
we plot the obtained error ‖x−µ‖2, where x is the vector of the
average estimations at the sensors and µ = x̄01. SEA+maxdeg
(dash-dot line) is to be compared to MAX-DEG (solid line)
and SEA+metr (dashed line) is to be compared to METR
(dotted). Observe that in SEA algorithms, the error does not
decrease monotonically with respect to k. However, when k
becomes equal to the grade of u0 (and this may occur well
before k = n), the approximation is quite good and superior
to the one of state-of-the-art iterative methods. Thus, the SEA
algorithms are more effective than the iterative methods and
they converge in a small number of steps k ¿ n.

IV. CONCLUSIONS

In this paper, we proposed the use of extrapolation tech-
niques for accelerating distributed linear iterations that often
appear in consensus problems in the context of ad hoc sensor
networks. In particular, we proposed the use of the Scalar
Epsilon Algorithm, which extrapolates the scalar sequence of
each sensor, with no communication overhead. The simulation
results demonstrated the effectiveness of the proposed scheme.
We are currently investigating the extension of the methodol-
ogy to the case of time-varying communication graphs.

V. ACKNOWLEDGEMENTS

The first author would like to thank Prof. Y. Saad for
introducing her to the extrapolation methods while she was
a graduate student at the University of Minnesota.

REFERENCES

[1] P. Wynn, “Acceleration Techniques for Iterated Vector and Matrix
Problems”, Math. Comp., vol. 16, pp. 301-322, 1962.

[2] D. Smith, W. Ford and A. Sidi, “Extrapolation Methods for Vector
Sequences”, SIAM Review, vol. 29(2), pp. 199-233, June 1987.

[3] S. Cabay and L.W. Jackson, “A Polynomial Extrapolation Method for
Finding Limits and Antilimits of Vector Sequences”, SIAM J. Numer.
Anal., vol. 13, pp. 734-752, 1976.

[4] R.P. Eddy, “Extrapolating to the limit of a vector sequence”, Information
Linkage Between Applied Mathematics and Industry, Academic Press,
New York, pp. 387-396, 1979.

[5] L. Xiao and S. Boyd, “Fast Linear Iterations for Distributed Averaging”,
Systems and Control Letters, February 2004.

[6] L. Xiao, S. Boyd and S. Lall, “A Scheme for Robust Distributed
Sensor Fusion Based on Average Consensus”, Int. Conf. on Information
Processing in Sensor Networks, pp. 63-70, Los Angeles, April 2005.

[7] L. Xiao, S. Boyd and S. Lall, “Distributed Average Consensus with Time-
Varying Metropolis Weights ”, submitted to Automatica, June 2006.

[8] A. Olshevsky and J. Tsitsiklis, “Convergence Rates in Distributed
Consensus and Averaging”, IEEE Conference on Decision and Control,
San Diego, CA, December 2006.

[9] Y. Saad, “Iterative methods for sparse linear systems”, SIAM, 2nd edition,
2003.

