EPFL Technical Report IC/2004/55

NASCENT: Network Layer Service for Vicinity
Ad-hoc Groups °

Jun Luo

Jean-Pierre Hubaux

School of Computer and Communication Sciences
EPFL (Swiss Federal Institute of Technology at Lausanne), CH-1015 Lausanne, Switzerland

{jun.luo, jean-pierre.hubaux}@epfl.ch

ABSTRACT

Many envisioned applications of ad hoc networks involve
only small scale networks that we term Vicinity Ad-hoc
Groups (VAGs). Distributed coordination services, in-
stead of pairwise communications, are primary require-
ments of VAGs. Existing designs for distributed services
in ad hoc networks apply either a layered structure or a
vertical integration. While the former approach is efficient
for protocol development, the latter improves runtime ef-
ficiency. In this paper, we argue that, since distributed
services require group-oriented communications, both de-
sign and runtime efficiency of protocols can be achieved in
VAGs, provided that a dedicated network layer service is
designed in place of unicast routing protocols. Based on
these arguments, we propose NASCENT as a general net-
work layer service for VAGs. NASCENT provides a light-
weight VAG membership management along with a rout-
ing structure for message passing, and supports concurrent
execution of various distributed algorithms. NASCENT is
also tailored to cope with the transiency of VAGs. We
demonstrate how smoothly distributed algorithms can be
built on top of NASCENT. With a complexity-based anal-
ysis, we also show that NASCENT greatly improves the
runtime efficiency of these distributed algorithms. Finally,
through simulations with ns-2, we confirm the ability of
NASCENT to support the envisioned VAG applications.

Keywords
Ad Hoc Networks, Vicinity Ad-hoc Groups, Network Layer
Services, Distributed Algorithms

1. INTRODUCTION

The highly dynamic topology of ad hoc networks suggests
that distributed services are often required, because cen-
tralized services relying on individual nodes are not de-
pendable enough. In particular, certain applications of
ad hoc networks (e.g., wireless multi-player gaming and
teamed robots) require primarily distributed services to
coordinate the collective actions of nodes in small scale
networks, whereas pairwise connections that support stream
traffic are barely used. We term the networks implied by
such applications Vicinity Ad-hoc Groups (VAGs), in order

*The work presented in this paper was supported (in
part) by the National Competence Center in Research
on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322.
(http://www.terminodes.org)

to emphasize their small network scale and group-oriented
communication paradigms (i.e., broadcast in nature). Due
to these peculiarities, protocol reengineering appears to be
necessary.

Currently, protocols for supporting distributed services in
ad hoc networks are usually built upon routing protocols
(e.g., AODV [31] and DSR [16]). Examples include over-
lay multicast (e.g., [15, 3, 24]), membership service (e.g.,
[37]), and resource discovery and management (e.g., [11,
21]). This layered approach, inherited from the Internet
architecture, aims at reducing the protocol design com-
plexity; as unicast routing provides the upper layer with a
fully connected graph, virtually any distributed algorithm
can be built on top. However, this approach can be ineffi-
cient for those applications where a fully connected graph
is an overkill. In the Internet, this inefficiency is tolera-
ble thanks to unlimited bandwidth, but the problem has
to be tackled in ad hoc networks since both bandwidth
and power are scarce. An alternative approach [26, 41, 19,
1] suggests that so called mobility aware distributed algo-
rithms be built directly upon the MAC layer. Although
protocols designed with this vertical integration approach
are efficient at runtime, the design complexity is increased
because, without a layered structure, low-layer protocols
have to be developed separately for individual services.

There is of course a contradiction between these two ap-
proaches, but we believe that a trade-off can be found
to achieve the best of both worlds in VAGs. Since com-
munications in VAGs are group-oriented, it is possible to
design a network layer service that includes common en-
abling mechanisms (e.g., broadcast message routing and
membership management), and to leave distinct require-
ments fulfilled by upper layer distributed algorithms. The
protocol design complexity of this approach is similar to
that of the layered approach, but the run time efficiency of
resulting protocols can be improved to the level of the ver-
tical integration approach. Also, building such a service
at the network layer makes it more adaptive to impacts
of different mobility patterns and MAC or even physical
layer protocols, compared with services based on unicast
routing. The small network (or group) size, as well as
transient link and node failures of a VAG, can also be ex-
ploited. This reduces global membership tracking to local
failure detections (similar to [40]), and again simplifies the
protocol design and improves the runtime efficiency.

Couchepin
EPFL Technical Report IC/2004/55

In this paper, we investigate the problem of supporting dis-
tributed services in VAGs, bearing specific applications in
mind. Our NASCENT (Network 1Ayer ServiCE for viciN-
iTy ad-hoc groups) aims at replacing routing protocols to
support applications that involve mainly group-oriented
communications. NASCENT integrates a directed acyclic
graph (DAG) with token circulation: while the DAG han-
dles message routing and group membership, the circu-
lated token grants temporary control of a VAG to its hold-
ers. As a result, NASCENT provides support for various
distributed algorithms. Our contributions are: (i) a gen-
eral network layer service to support various distributed
services, (i) embedded membership service requiring only
localized operations, (iii) algorithms to initialize a token-
oriented DAG among an emerging VAG, and (iv) algo-
rithms to recompose the DAG upon the VAGs’ merging.
We present several distributed algorithms that can be eas-
ily developed by using the services of NASCENT. In ad-
dition, we apply a complexity-based analysis to show the
reduced runtime complexity of these algorithms. Finally,
we perform simulations with ns-2; the results prove that
NASCENT is capable of supporting the targeted applica-
tions.

The rest of this paper is organized as follows: Section 2
explains our motivation for this work. Section 3 states
the problem and the network model. Section 4 presents
our NASCENT service. Section 5 gives examples of dis-
tributed algorithms built upon NASCENT and proves the
efficiency gains in both protocol design and runtime over
existing approaches. Simulation results are provided in
Section 6. Section 7 surveys related work. Finally, Sec-
tion 8 concludes the paper.

2. MOTIVATIONS

In this section, we first list several envisioned applications.
Then we identify the common requirements of these appli-
cations, as well as their distinct features. The outcome
of the case studies then leads to the motivations of our
protocol design.

2.1 Potential Applications

We envision three applications that have immediate needs
for both ad hoc networking and distributed coordination
services. Note that we only list a few here for brevity.
There could be more applications in the same vein.

a. Wireless multi-player gaming: Although devices

supporting wireless gaming such as the Nokia N-Gage™

game deck do exist, the players either have to pay
bills (with GPRS) or are limited in number or by
mutual distances (with Bluetooth). Devices based
on IEEE 802.11-like wireless MAC gain more free-
dom, but distributed coordinations become necessary
due to the absence of a centralized control. Fig. 1(a)
shows a gaming scenario where players are contend-
ing for a special position (the queen).

b. Cooperative robotics [6]: Using teamed robots
for unmanned explorations and rescue operations be-

comes an increasingly tempting application. There-
fore, several ongoing researches (e.g. [34, 17]) are
focusing on coordinating robots with wireless com-
munication networks. Fig. 1(b) shows an example of
exploration robots making an agreement on the mov-
ing direction.

i@' gg Ao
R 450 =
i .
a8 60 ng
A s
(a) (b)
Figure 1: Application examples: (a) wireless

multi-player gaming, and (b) exploration robots.

c. Cooperative driving system [35]: Vehicles run-
ning through critical points, such as highway entrances
and blind crossings (crossings without light control),
have to be scheduled to share the resources (i.e., those
critical points), in order to avoid collisions. Dis-
tributed algorithms relying on inter-vehicle commu-
nications could be a conflict resolution method per-
formed by the vehicles themselves.

The aforementioned applications share several characteris-
tics. First, the scale of the network is usually small (either
geographically or logically or both). This is easy to see
because vehicles have no interests in contending a critical
resource that is far away from them, and people in one
city do not play a wireless game with people in another
city (in which case they can play games over the Inter-
net). Secondly, these networks tend to be transient. For
example, players join and leave a wireless game sponta-
neously; and the task dedicated groups of robots might
change when finishing a job and starting another. The
network topology also changes with time due to node mo-
bility. Thirdly, broadcast is the dominating communica-
tion paradigm within the network, which is a consequence
of the group-wide coordination explained in the next para-
graph. We term such a small network VAG (i.e., Vicinity
Ad-hoc Group) to depict these peculiarities.

Members belonging to a given VAG have the same goals
(performing specific tasks or sharing certain resources),
while the group is inherently distributed with each mem-
ber having only local information. This situation calls for
various distributed algorithms to coordinate the behav-
ior of a VAG. In cooperative driving and wireless gaming
scenarios, resource allocation and consensus can be useful.
Leader election and reliable broadcast (with certain order-
ing properties) are also needed in gaming. Depending on
a given task, a robot team may require one or all of these
functions. Moreover, a membership service is generally
considered as an important building block of distributed
algorithms. However, a service that tracks membership
globally and ensures a consistent view at each member
does not make sense in transient groups since it could

hardly converge. Replacing global membership tracking
with local failure detections, as suggested in [40], results
in a light-weight membership service that still guarantees
the correctness of algorithms based on the service. Finally,
the group-wide coordinations in a VAG require a routing
structure that directly supports broadcast for improved ef-
ficiency, because the states of individual members have to
be conveyed to the whole group.

While the common features suggest a uniform framework,
constraints of each application have to be taken into ac-
count in order to design functional protocols. On one
hand, the mobility pattern of a VAG greatly depends on
the targeted applications. Vehicles have high speed but
their motions are predictable thanks to the known topol-
ogy of roads. Game players tend to be relatively static
when the game is going on. The movements of robots
might be more complex, but the group behavior makes
them somewhat foreseeable. On the other hand, the MAC
and physical layer protocols could vary according to appli-
cation requirements and technology developments. Inter-
vehicle communication systems may need devices that sup-
port a large transmission range and flexible assignment of
radio resource [22]. The physical layer of a robot depends
greatly on the function of the robot.

2.2 Summary
Following the aforesaid investigations, we summarize our
design motivations as follows:

e A dedicated network layer service could be more effi-
cient than unicast routing protocols (which support
point-to-point stream traffic) in supporting various
distributed algorithms, considering the broadcast na-
ture of communications in a VAG.

e This service should also take care of membership man-
agement, because distributed algorithms usually have
the same need of membership information, in spite of
different intentions.

e The transiency of VAGs requires the service to have
the ability of prompt initialization and to cope with
frequent topology and membership changes. It also
suggests that a global membership tracking would be
highly inefficient.

e The service should also be capable of adapting to the
change of underlying protocols (e.g., MAC) and to
different mobility patterns.

3. GOALS AND MODELS

All the aforementioned facts have motivated us to come up
with new networking protocols. To this end, we formally
define the problem we want to solve and the considered
environments.

We consider small scale ad hoc networks (or VAGs), where
group communication is the dominating communication
paradigm. Our goal is to develop a group-oriented net-
work layer service, other than a unicast routing protocol,

to support distributed services (in particular distributed
algorithms such as reliable broadcast and resource alloca-
tion) in VAGs. The service should provide consistent inter-
faces to the upper layer distributed algorithms and make
the underlying topology changes (including the changes of
membership) transparent to them.

We assume that every node in a VAG has a unique ad-
dress addr. Nodes may fail only by crashing, i.e., stop
functioning. Failures are not permanent and can be re-
covered from.! All communications between nodes are as-
sumed to rely on the underlying MAC protocol, so that
only nodes within the transmission range of each other
can communicate directly and are thus termed neighbors.
Each communication link is assumed to be bidirectional
and FIFO. A link is reliable for unicast (denoted by a
SEND() primitive), but it is unreliable for broadcast (de-
noted by a BCAsT() primitive). The network is modeled
as an undirected graph G = (V| E), with nodes as vertices
and an edge existing only between neighbors. The graph
changes dynamically and is not necessarily connected. We
further assume that the members of a VAG follow group-
based movements (e.g., [42]); each member is aware of its
mobility group defined by its VAG membership (which is
not the case for [42]). This implies that partitions of a
VAG seldom occur and that most partitions are transient.

4. NASCENT: GROUP-ORIENTED

NETWORK LAYER SERVICE
We present NASCENT in this section. We first overview
the architecture of NASCENT, then we briefly justify our
design considerations. The protocol is detailed afterward.

4.1 Overview of NASCENT

As shown in Fig. 2(a), NASCENT is a network layer ser-
vice to replace routing protocols in the protocol stack for
VAG members.? It acts as a building block of the group-
oriented communications in a VAG, and provides support
to distributed algorithms such as Mutual Ezclusion (MX, a
special case of resource allocation), Leader Election (LE),
Reliable Broadcast (RB), etc. The protocol architecture
contrasts clearly with the layered structure based on uni-
cast routing in Fig 2(b) and the vertical integration ap-
proach in Fig 2(c) (introduced in Section 1).

The protocols that compose NASCENT are also shown
in Fig. 2(a). The Local Membership Tracking Protocol
(LMTP) keeps track of the members within 2 hops by
exchanging lists of neighbors with neighbors. The DAG
Maintenance Protocol (DMP) transforms the undirected
graph G into a token-oriented DAG and maintains the
DAG when G is undergoing any changes or the DAG has to
be reformed in response to operations in other protocols.
The combination of LMTP and DMP acts as the mem-
bership service of NASCENT. The Token Passing Proto-

IThis failure model also captures the case where nodes are
intentionally switched off.

2Members of a VAG can also install other protocols (e.g.,
unicast routing) at the network layer, but we do not show
them in Fig. 2 because the applications supported by these
protocols are not the goal of the VAG.

‘ MX H LE H RB ‘ Interface tofupper layer
NASCENT =
Rotating Coordination +
Link Abstraction + Local DAG Token
Membership Management Mimbi.’smp Maintenance|| Passing
- Pratt: mgl Protocol Protocol
\ MAC and Physical Layer \ - JLrotece
(a)
[mx J[LE [RB | ..
Membership Management MX || LE RB
\ Unicast Routing Protocols\

| MAC and Physical Layer | | MAC and Physical Layer |
(b) ()

Figure 2: Comparisons between the approach of
NASCENT (a) and two designs of existing dis-
tributed algorithms (b)&(c).

col (TPP) causes a token to visit every member periodi-
cally. The token holder becomes a centralized control of
its VAG temporarily, which is a key to building the upper
layer distributed algorithms. In addition, each protocol
is responsible for the accommodation of certain underly-
ing protocols and mobility patterns. For example, if the
MAC protocol already has some mechanisms for neighbor
discovery, LMTP can leverage on this and thus reduce its
load. Also, specific mobility patterns, such as how vehicles
behave at a highway entrance, can be exploited to predict
a link breakage.

4.2 Design Rationale
We address the main decisions about our design in this
section.

Why local failure detection instead of global membership
tracking?

As membership management in wired networks usually
involves a global agreement on a certain view of group
members, distributed algorithms proposed for ad hoc net-
works tend to inherit this feature [33, 18] and probe the
membership constantly. However, this approach is highly
inefficient in a VAG because the network topology and
membership change frequently and because possible node
failures are often transient. Following the spirit of [40], the
membership service of NASCENT ensures that a transient
failure does not incur a global membership change.

Why apply a DAG?

A logical structure provides paths to route messages. It
also binds all local views together and thus results in a
functional membership service. The transiency of VAGs
requires the structure to be capable of prompt initializa-
tion and to sustain frequent topology and membership
changes. We believe that a DAG can meet this need,
whereas other structures such as a ring and a tree do not

provide enough redundancy to cope with the transiency of
VAGs.

Why circulate a token?
The token passing, sometimes called a rotating coordina-
tor paradigm, has long been regarded as an efficient way to

support (ordered) reliable broadcast [2, 43, 27] and mutual
exclusion [36, 29] in wired networks, then it has also been
used in ad hoc networks to implement distributed algo-
rithms [41, 7]. We further observe that a circulated token
can be a basis of virtually any distributed algorithm.

Finally, mobility prediction is shown (by, e.g., [42, 20, 37])
to be very important in ensuring the stability of a group,
which further guarantees successful terminations of cer-
tain distributed algorithms.? Considering also the diver-
sity of underlying protocols, the flexibility of accommodat-
ing both mobility patterns and underlying protocols will
be incorporated into NASCENT, but we do not go into
such implementation details in this paper.

4.3 Protocol Details
We describe NASCENT in detail in this section. Each
subsection is devoted to a protocol.

4.3.1 Local Membership Tracking Protocol (LMTP)

Each member of a VAG periodically broadcasts a beacon
message (bmsg) including the ids of its neighbors. A mem-
ber, upon receiving the message, infuses the ids into its lo-
cal view (lview). An id is removed from the local view if no
bmsg from that member is received in 7, consecutive bea-
con periods. Note that the id of a member is not exactly
its address addr but a tuple including the address. The
format of an 4d is introduced in Section 4.3.2 (where it is
used by DMP). Fig. 3 illustrates the exchange of bmsgs as
well as the format of a bmsg and lview. Through this infor-
mation exchange, each member is aware of other members
within 2 hops and also synchronizes with its neighbors.
Tracking membership only within 2 hops ensures the fresh-

gid nids (nnids) -
Local view @T -----

nid: id of neighbor | g
nnid: id of neighbors’ -

neighbor » \) i S
N g 2,3(4),5(657) @
@ 1(2,3),6,7
el ® e
gid|sid | nids
O] Q 2id5[1,6,7
- - Beacon message

gid: id of group
sid: id of sender

Figure 3: Beacon-based local membership tracking
(addrs instead of ids are shown to save spaces).

ness of the membership. The membership information is
valid at least k — 1 beacon intervals before it is received
if the membership is tracked within & hops. The high
dynamics of VAGs suggest that a large value of k could
not guarantee the correctness of the membership informa-
tion. Also, tracking membership with a large radius puts a
heavy load on the network. Compared with neighborhood
tracking, the 2-hop membership tracking gains much more
information with only slightly increased overhead, since

3The necessity of group stability is often implied by as-
sumptions like “a failure occurs only after the group re-
covers from the previous failure”.

both schemes need beacons but only differ in the size of
the beacon message. The GBCAST primitive (explained
in Section 5.1.2) takes advantage of this information gain
to reduce its costs.

Note that LMTP replaces any beacon mechanisms im-
plemented by an underlying MAC protocol (e.g., IEEE
802.11). Moreover, an incoming bmsg could be filtered ac-
cording to certain policies. An example of such policies is
Safe Distance proposed in [37].

4.3.2 DAG Maintenance Protocol (DMP)

We propose new algorithms to initialize a token-oriented
DAG in a newly formed VAG and to recompose the DAG
upon the VAGs’ merging. To cope with topology changes
due to node mobility, we reuse the partial reversal method,
referred later as PREVER primitive, described in [8].

We let the id of a member ¢ (i.e., addr = i) be a triple
[a, B, ©]. These ids, ranked lexicographically (id; > id ;<

Oéi>Oéj\/(0éi:Oéj/\ﬁi>Bj)V(ai:Oéj/\ﬁi:ﬁj/\i>j)),

form a total order sequence. Member i considers a com-
munication link with member j as an outgoing edge if
id; > id;, otherwise the link is an incoming edge. As
a result, the communication graph G is transformed into a
DAG.

Initialization

Initially, the id of member i is set to [0,0,:], so the DAG
might have more than one sink. In the example of Fig. 5(a),
members 1,2, and 3 are all sinks. Since we let a sink hold
a token, this situation does not guarantee the uniqueness
of the token in a VAG. In order to remove those super-
fluous sinks (e.g., members 2,3), each member adjusts its
id according to the incoming bmsgs. Algorithms describ-
ing these adjustments are shown in Fig. 4. Each mem-

procedure INIT(id;)
lview;.gid «— 1id;; init; «— true

upon REcv(bmsg) do
if (bmsg.gid < lview,.gid) A init; then
lview;.gid «— bmsg.gid
id;.3 «— bmsg.sid.f+ 1

Figure 4: Initialization at member 1

ber initializes the gid in lview (refer to Fig. 3 for details)
with its id (line 2). Upon receiving a bmsg, each member
checks if there exists a gid that is smaller than the one
it knows (line 4). The lower gid is then taken and the
id is adjusted properly (lines 5-6). Fig. 5(b) shows the
situation after each member broadcasts the first bmsg fol-
lowing the initialization of its lview.gid. At some point in
time, gids of different sinks will arrive at the same mem-
bers. These members form a collision region, shown in
Fig. 5(c). Members belonging to a collision region choose
the sink with lower id as the token holder and confirm
the outgoing edge to it; the following bmsgs will reverse
the edge to other sinks. This procedure continues until all
superfluous sinks are removed, which terminates the algo-
rithm and results in a token-oriented DAG (with member
1 being the initial token holder), as shown in Fig. 5(d).

[0,0,1]

10,1,1] 10,1,4]
[0,1,1]

@ ®)
@021 0,3,1]

10,1.1] 10.2,1]

[0.3,1]

0,01 @YW 10,0,1]
0.1 102,11 0.1 [0,2,1]
[0,1,1] [0,1,1]

(c) (d)

Figure 5: Initialization of a token-oriented DAG.
The g¢id and id of each member is put in a compact
way to save spaces, such that the first two elements
are a and (§ of an id and the third element is the
addr of a gid.

We prove the correctness of this algorithm by showing that
the following two properties of the algorithm hold.

PROPERTY 1. The algorithm eventually terminates.

PrOOF. The [view.gid of each member will be set to
the smallest id in the network after some time. The algo-
rithm terminates because of the conditional statement in
line 4. O

PROPERTY 2. The resulting DAG has only one sink.

PROOF. Assume, in contradiction, that there is an ex-
tra sink whose id is not the smallest one after the algo-
rithm terminates. Since the algorithm has terminated, the
lview.gid of this member is set to the smallest id in the net-
work. Considering that the initial lview.gid is larger than
the final one, the algorithm must reach line 6 once ex-
actly before the algorithm terminates, which implies that
it has an outgoing link. The link will not be reversed after
that, because the lview.gid at the other end of this link
has already been the smallest id (i.e., the algorithm has
terminated), a contradiction. [

Although the algorithm terminates correctly, individual
members have no knowledge about when the termination
happens since the algorithm is executed in a distributed
manner. It is important to let every member be aware of
the termination in order to make progress in other proto-
cols (e.g., TPP). For this purpose, we force the algorithm
to stop (i.e., set the flag init to false) after a given time
span by using a timer. The timeout value of this timer is
set according to the time complexity of the algorithm (re-
fer to Section 5.2 for details). The accuracy of this value
is not so relevant because, even if the algorithm is stopped
too early due to an improper value, the resulting token
collision will be solved by TPP.

Merging

With proper extensions, the algorithm of Fig. 4 lines 3-6
handles also merging. The extended algorithm is shown
in Fig. 6. Whenever a node belonging to an established

1: upon Recv(bmsg) do

/* Fig. 4 lines 46 */
3: if (bmsg.gid < liew;.gid) A init; A ISMERGE() then
4: init; <« true; init_timer; «— 0

Figure 6: Merging at member ¢

VAG receives a bmsg whose gid is smaller than its own
(line 3), it switches back to the initialization phase (line
4). The border members of this VAG that meet nodes from
the other VAG form the collision region in Fig. 5(c). The
algorithm is guaranteed to terminate and results in only
one sink whose g¢id is the smallest. We note that a merging
does not always take place when VAGs meet each other.
It is the duty of a given application to decide whether to
start a merging procedure, by responding to the callback
procedure ISMERGE().

Maintenance and Partition Detection

The PREVER primitive that maintains the token-oriented
DAG (briefly summarized in Fig. 7) is the partial reversal
method in [8]. This primitive is invoked by a VIEWCHG

upon VIEWCHG do
if init; A (id; < nid,Vnid € lview;) then
id; . — minpidewiew; {nid.a} + 1

if Inid € Wiew; s.t. nid.a = id;.a then
id;. B — minmdelm'e'wiAmd.a:zdi.a{nid'ﬁ} -1

upon RECV(token) from id; do
idi.a — idj.o; idi.f — id;.0—1

upon SEND(token) to id; do
idj.a «— idi.o; id;.f — idi.f—1

Figure 7: PREVER at member i

event resulting from any changes of the lview (lines 1-5)
or a token transfer (lines 6-9). Note that the response
to a token transfer is not defined in [8], but our exten-
sion follows the general guidelines discussed in [8] and thus
guarantees that only a unique sink holds the token. It is
known that the algorithm becomes unstable in partitions
that disconnect from the token holder. Partition detec-
tion mechanisms (e.g., TORA [30]) can be one solution.
We will describe an alternative solution based on a timer
in Section 4.3.3.

Join and Leave

A node intending to join a VAG puts a join indication in
its bmsgs. If the id of a joining member does not make it
to be a sink, then nothing happens except that the mem-
ber infuses its (view with the members nearby and sets its
lview.gid to the gid acquired from these neighbors. Oth-
erwise the PREVER primitive is called to reverse some of
its links. Members broadcast leave indications upon leav-
ing. In particular, a token holder should hand on its token
before leaving. The PREVER primitive for the remaining
members automatically recovers the token-oriented DAG.

Functionalities of LMTP-DMP Combination

The combination of LMTP and DMP acts as both a rout-
ing structure and a membership service. As a routing
structure, this combination facilitates the routing of broad-
cast messages from a token holder and unicast messages
towards it. As a membership service, this combination lim-
its the impact of any membership changes to only a scale
of 2 hops with LMTP, while bridging the gaps between
individual views with DMP. This scheme makes sense in
the cases of both transient failures* and permanent mem-
bership changes (e.g., nodes join and leave). The reason
is that certain distributed algorithms (e.g., resource allo-
cation) do not necessarily need a global membership view
as long as all VAG members are informed of the outcomes
of algorithms executions. Whereas membership changes
can potentially be propagated for applications that require
the information. Detailed usages of these functions can be
found in Section 5.1.

4.3.3 Token Passing Protocol (TPP)

TPP circulates a token within a VAG. The token is a mes-
sage that contains certain system states. A token holder
acquires and modifies these states, and thus acts as a tem-
porary coordinator, which facilitates various distributed
coordinations. We propose two algorithms, TPP-Q and
TPP-R, for circulating the token. In TPP-Q, the token
circulation is performed by a distributed queueing system.
This system guarantees that the token repetitively visits
each member with a period linear with n. TPP-R applies
a more heuristic method based only on local recency in-
formation, which brings less overhead but comes with a
larger worst-case upper bound of the circulation period.
We provide only intuitive ideas of TPP in this section and
leave detailed descriptions to the Appendix.

Token Circulation with a Queueing System (TPP-Q)

As a follow-up of Fig. 5, Fig. 8 provides an example of one
token circulation period with TPP-Q. Each VAG member
is equipped with a queue. Upon finishing initialization,
each member, except the token holder, enqueues its own
request of the token and also forwards a request to a mem-
ber with minimum 4d in its local view. A request contains
the requester’s address saddr and a count epoch that de-
notes which cycle of the request is for. Fig. 8(a) shows that
the distributed queueing system actually builds a rooted
spanning tree. Then, as exhibited by Fig. 8(b),(c),(d), the
token will travel along the tree edges. They also show that
the epoch of every queued request is stepped up by one af-
ter the token has visited all members. As a consequence,
the token will repeat the same trajectory that it follows
in the first cycle and thus visit each member periodically.
We distinguish the case where a member is visited by the
token from the case where a member receives the token.
A member is considered to be visited only if its request is
the first in the queue when it receives the token.

The spanning tree has to be repaired when some tree edges
are broken due to topological changes. Since the under-

4This type of failures includes node failures (e.g., operating
system crashes), link failures (due to, e.g., interference),
and node mobility.

—> Directed logical link defined by id

—> Directed logical link defined by request

Figure 8: One cycle of token circulation by TPP-Q.
Each request in the queue is represented by
saddr(epoch), and the queue is FIFO with its header
at the bottom.

lying token-oriented DAG is repaired by DMP, a member
with a broken outgoing edge in the tree simply replaces the
edge with another outgoing edge in the DAG. Detailed op-
erations are presented in the Appendix.

Token Circulation with Recency Information (TPP-R)

If TPP-R is used for token circulation, each VAG mem-
ber keeps an array that records the time when the to-
ken visited each neighbor recently. A member that re-
ceives the token is visited by it only if the member has
the least recency record among all neighbors, otherwise it
forwards the token to a neighbor with the least recency
record. The recency information is piggybacked with the
token to inform a member about the records of its neigh-
bors. Although TPP-R usually has a smaller token circu-
lation period than that of TPP-Q (because shortcuts can
be exploited to avoid backtrackings), the worst-case upper
bound of this period is much larger (refer to Section 6.4
for an example).

For both cases of TPP-Q and TPP-R, a timer is set after
a token holder releases the token, in order to detect group
partitions. The timer times out if the member does not
receive the token within a given time span. This leads
to a new initialization phase. If partitions really happen,
all members that are disconnected from the token holder
will enter the initialization phase and thus regenerate a
token for each connected partition. If it is a false positive,
the member can either rejoin the previous VAG or merge
with the VAG, depending on whether an application allows
merging or not (see Fig. 6 line 3). Since false positives
make a VAG unstable, it is crucial to set the timeout value
in order to reduce the probability of false positives. The
following property of TPP-Q facilitates this value setting.

PROPERTY 3. The time for a token to wisit all VAG
members in one cycle is upper bounded by T = 2D pqonTi+

nTs if the VAG remains static during that time period.
Here D, is the degree of the undirected graph G, n is
the cardinality of the VAG, T, and Ts are the one way
transmission time and the time for the token to sojourn
at a visited member, respectively.

PrOOF. The distributed queue maintained by TPP-Q
creates a rooted spanning tree 7 = (V, E7). The exact
time to travel all vertices in 7 is 2|Er|T; 4+ |V|Ts, where
|E7| < Dpmazn and |V| = n. Note that the upper bound
is tight enough if T} < Ts. O

Although TPP-R has a larger worst-case upper bound, T
works well in most cases. Therefore, we set the timeout
value to T, and the parameters can either be adaptively
changed on-line or be estimated off-line (e.g., the maxi-
mum number of roles in a game is known to every player).
The way to make on-line adaptations or off-line estima-
tions depends on specific applications, so NASCENT pro-
vides the upper layer with an interface to set T.

S. DISTRIBUTED ALGORITHMS
ON TOP OF NASCENT

In this section, we sketch the implementation of several dis-
tributed algorithms on top of NASCENT. We also perform
a complexity-based analysis on NASCENT and these algo-
rithms. Our goal is to demonstrate how NASCENT sim-
plifies the design of distributed algorithms and improves
their runtime efficiency. We avoid detailed descriptions
and correctness proofs for brevity.

5.1 Algorithm Descriptions
We briefly describe several distributed algorithms built
upon NASCENT. It is straightforward to see that the de-
sign of these algorithms is simplified thanks to the use of
services provided by NASCENT.

5.1.1 Resource Allocation

A special case of resource allocation is mutual exclusion
that allows only one member to access a unique system
resource each time. The authors of [41] demonstrate that
this problem can be solved by a token-based algorithm.
Since NASCENT also circulates a token, it is very straight-
forward to build a mutual exclusion algorithm on top of
NASCENT. Here we consider a more general resource al-
location problem, where several instances of a single sys-
tem resource exist and only one member can access one
instance each time. We also distinguish between local
multi-instance and distributed multi-instance resource al-
location. In the former case, all instances of the resource
are geographically close to each other. Cooperative driv-
ing at a critical point (Section 2) is a good example, where
lanes that run parallel are instances of a resource (the crit-
ical point). The latter case is more broad in sense, because
it applies to many coordination functions in multi-player
games and teamed robots.

The local multi-instance resource allocation can be solved
by simply extending the mutual exclusion algorithm: a
token holder, instead of allowing only itself to access the

resource, also grants permission to its neighbors for ac-
cessing other instances of the resource. We hereafter focus
on the distributed multi-instance resource allocation. Let

upon REQRES() do
req-res; <« true

upon RELRES() do
req_res; <« false

upon REecv(token) do
if req_res; A (i € [1,m] s.t. token.sub_tk[i].id = null) then
token.sub_tk[i].id — id;
/* now access the resource and release the token */
if Teq_res; A (3i € [1,m] s.t. token.sub_tk[i].id = id;) then
token.sub_tk[i].id «— null
/* now release the token */

Figure 9: Request and release a resource instance
at member i

the token carry m sub_tk that represent m instances of a
certain resource. Fig. 9 shows an algorithm for allocat-
ing these instances. A member intending to access the
resource indicates its requirement (lines 1-2). The mem-
ber can access the resource only if it receives the token
and at least one instance has not been claimed by other
members (lines 6-7). After finishing the resource access,
the member signals this and releases the sub_tk it claimed
upon receiving the token (lines 3—4 and 8-9). In addition,
the token can also carry a queue that orders the resource
requests to ensure fairness.

5.1.2 (Ordered) Reliable Broadcast

A reliable broadcast ensures that a message broadcast by
a member is delivered by all correct members [12]. Our
solution built upon NASCENT is similar to what is pro-
posed in [27]. As shown in Fig. 10, a member broadcasts

1: procedure RBCasT(msg)

2: SMsgBuffer; «— SMsgBuffer; U {msg}

3: upon REcv(token) from id; do

4: if SMsgBuffer; # 0 then

5: for all msg € SMsgBuffer; do

6: GBCaAsT(msg)

7 token.view(id;][msg.mid].recv <« true

8: SMsgBuffer; «— SMsgBuffer;/{msg}

9: for all msg s.t. token.view[id][msg.mid].recv # true do
10: if msg € RMsgBuffer then

11: token.view[id;][msg.mid].recv « true

12: else

13: request msg from id;

14: if Anid s.t. token.view[nid][msg.mid].recv = false then
15: DELIVER(msg) /* to the upper layer */

16: upon REcv(msg) from id; (sent by BCAST) do
17: if msg ¢ RMsgBuffer; then

18: RMsgBuffer; < RMsgBuffer; U{msg}
19: GBCAST(msg)
20: beast_view[msg.mid] «— bcast_view[msg.mid] U {id;}

21: procedure GBCAsT(msg)
22: if dnid € liew s.t. nid > id; A

nid € J,, idy.lview,Vidy, € becast_view[msg.mid] then
23: BCAST(msg) /* see Section 3 */

Figure 10: Reliable broadcast at member i

a message only when holding the token (lines 1-8), by
invoking the GBCAST primitive (lines 21-23). A token
holder also sets the recv flag corresponding to a received

message to true (assume that mid uniquely identifies a
message). A missed message is requested from the pre-
vious token holder. The message is delivered to the up-
per layer only if all members have received it (lines 9-
15). A member stores a broadcast message received for
the first time and rebroadcasts it, also by the GBCAST;
the member also memorizes the sender of each received
message (lines 16-20). The GBCAST primitive leverages
on the token-oriented DAG and on the neighborhood in-
formation in lview to reduce collisions in the MAC layer
and gains reliability and efficiency over flooding. It is also
more robust than a tree-based multicast protocol, since the
VAG members are linked by a (directed) mesh. The re-
liability of GBCAST is further enhanced considering that
only one member (the token holder) can initiate a group-
wide message dissemination. As a consequence, negative
acknowledgements (line 13) are rarely sent by a member,
which results in an efficient reliable broadcast algorithm.
If a member wants to broadcast an urgent message with-
out waiting for the token, it can send the message to the
current token holder and ask for a proxy-broadcast. This
is possible because the DAG supports unicasts from all
members to the token holder.

Since messages are ordered in the token, a slightly modi-
fied version that requires each member to deliver messages
according to their order in the token solves the total order
broadcast problem (i.e., all correct members deliver mes-
sages in the same order). In addition, FIFO order and
causal order [12] are implicitly guaranteed. We note that
the variable view in the token actually maintains a global
view of membership. It means that NASCENT has the
potential to support global membership tracking; this ser-
vice is, however, not embedded in NASCENT because it is
not necessary for all distributed algorithms (e.g., resource
allocation).

5.1.3 Leader Election

Solutions to the leader election problem become trivial if
both mutual exclusion and reliable broadcast are solved.
As defined in [26], leader election needs to ensure that a
group whose topology remains static sufficiently long will
eventually have exactly one leader. The problem is sim-
ilar to mutual exclusion, because both problems are con-
cerned with a special member. They differ in that leader
election requires other members to be informed about the
existence of this special member, which is exactly what
reliable broadcast does. Our solution is the following: a
leader candidate who acquires the token before other can-
didates declares itself to be the leader; it then broadcasts
its 4d with the RBCAST primitive (Fig. 10). An alterna-
tive way is to put its id into the token, thus trading latency
for reduced communication costs.

5.2 Complexity Comparisons

In this section, we defend our claim that NASCENT im-
proves the runtime efficiency of the described algorithms.
For this purpose, we show that the complexity of maintain-
ing NASCENT is of the same magnitude as unicast routing
protocols, and that the complexity of running distributed
algorithms upon NASCENT is greatly reduced compared

to the same algorithms based on unicast routing protocols.
Note that the former complexity is measured against one
network perturbation (i.e., node or link failures) and the
latter is evaluated with respect to one specific operation.

We make use of time complexity (TC) and communication
complezity (CC) to quantify the performance of protocols.
We refer to [9] for detailed definitions of these two terms
and related synchrony assumptions. In Table 1, we com-

| [DSDV [AODV; DSR | GB; TORA | NASCENT |

TC, | O(d) 0(2d) 0(2d) 0(2d)

TC; | O(d) 0O(2d) O(l); O(2d) | O(1)

CC; O(n) O(2n) O(2n) O(2n + n)*
CCy | O(n) O(2n) O(x); O(2z) | O(2z + x)

n = Number of node in the network

d = Network diameter

x = Number of nodes affected by a topological change

| = Diameter of the affected network segment

* CC of DAG maintenance + CC of token request forwarding
Note that the second part appears only if TPP-Q is used.

Table 1: Performance comparisons between rout-
ing protocols and NASCENT.

pare the performance of several routing protocols (DSDV
[32], AODV [31], DSR [16], GB [8], and TORA [30]) with
NASCENT. The complexity computations of routing pro-
tocols are borrowed from [4, 39]. Each protocol is evalu-
ated in two situations, namely initialization and postfail-
ure, distinguished by the subscript of performance terms (i
and f, respectively). The comparisons show that the post-
failure complexity of NASCENT is comparable to those of
routing protocols, whereas the initialization complexity is
slightly higher. However, directly comparing table driven
protocols (DSDV and NASCENT) with on-demand pro-
tocols (AODV, DSR, TORA) is unfair, since the complex-
ity of an on-demand protocol is evaluated for each route.
In the case of group-oriented communications (where one
node needs routing paths to every other node), on-demand
protocols would incur much higher complexity than table
driven protocols because, in the worst case, an actual CC
is the one shown in Table 1 times n(n — 1)/2. Therefore,
DSDV is the only rival of NASCENT in the considered
scenarios of this paper.

Note that although the TC;s of NASCENT and GB are
equal because NASCENT applies GB to cope with fail-
ures in connected networks, the same TC;s of NASCENT
and GB do not suggest the same protocols. Actually,
NASCENT transforms a multi-sink DAG into a token-

oriented DAG, whereas GB converts a destination-disoriented

DAG into a destination-oriented one. The higher CC of
NASCENT compared to GB is due to the token circula-
tion, since extra token request messages have to be sent. In
addition, Table 1 seems to suggest that TORA has a higher
complexity compared to GB in the case of failures, but this
is not true because TORA can cope with network parti-
tions with the added complexity (while GB has an infinite
complexity in the cases to partition). NASCENT uses a
timer to detect network partitions and reinitiates the dis-
connected components. Therefore, the CC¢ of NASCENT
is the complexity of initializing a component with x nodes.

According to the comparisons of Table 1, it is hard to
prove that NASCENT is better than DSDV for support-
ing distributed services in VAGs. However, if we look at
distributed algorithms that make use of the services pro-
vided by these two protocols, the superiority of NASCENT
becomes clear. In Table 2, we use reliable broadcast as an
example to show the complexity of building distributed al-
gorithms on top of DSDV and NASCENT. The algorithm

[[DSDV+HT-RB [DSDV+RB | NASCENT+RB |
TC O(n) O(n) O(n)
CC O(n)* OBn+ax)T +1* O(3n)T +1*

HT_RB: the reliable broadcast protocol describe in [12]
RB: the reliable broadcast protocol describe in Section 5.1.2
* Broadcast T Multi-hop unicast f Single-hop unicast

Table 2: Performance comparisons between reli-
able broadcast protocols built upon DSDV and
NASCENT.

proposed in [12] (we refer to it as HT_RB to credit the au-
thors) is a representative of non-token-based solutions. It
can be roughly described as “each member, upon first re-
ceiving a message, broadcasts it to other members”. This
explains why it has a complexity of O(n) for both TC and
CC. However, it is much more expensive than a token-base
approach, considering that each message is broadcast. If
only the number of messages is counted, the token-based
algorithm we proposed in Section 5.1.2 has quite similar
CCs when running on top of DSDV and NASCENT, i.e.,
1 broadcast message (Fig. 10 line 6) and 3n unicast mes-
sages (1 token passing message, 1 negative ack and 1 re-
sponse for each member) in the worst case, while the al-
gorithm has to maintain a DAG with = extra messages
if it is based on DSDV. However, a unicast message in
the case of DSDV is transmitted through multi-hop rout-
ing and DSDV does not provide an efficient way to do
broadcast. Therefore, the algorithm based on NASCENT
is much more efficient considering the single-hop unicas-
tings and the collision avoidance GBCAST (Fig. 10 lines
21-23). Note that although the messages used to pass the
token are a part of NASCENT, they are counted in Ta-
ble 2 since these messages are involved in operations (e.g.,
broadcasts) instead of coping with network perturbations.

Actually, there are three other network layer services that
would compete with NASCENT: flooding (including its
optimized version such as [23]), ack-based reliable broad-
cast (e.g., [13]), and multicast (e.g., MAODV [38], ODMRP
[20], ADMR [14], and DCMP [5]). The complexity of
flooding is comparable to NASCENT+RB in the case of
broadcast (but without any reliability guarantee), but 2
flooding messages and n (multi-hop) unicast messages are
needed to achieve 1 mutual exclusion [28]. With NASCENT,
up to n mutual exclusions can be achieved with n (single-
hop) unicast messages (which correspond to the cost of
circulating the token). Ack-based reliable broadcast has a
large TC in general (because an ack can reach the sender
much later than others) and, similar to flooding, it is ex-
pensive to build other distributed algorithms based on
such protocols. Multicast protocols perform broadcasts
within a subset of network nodes (different from VAG sce-

4.00 |- .
—&— 30 nodes VAG (TPP-Q)

—A— 20 nodes VAG (TPP-Q)
—+%— 30 nodes VAG (TPP-R)
—>— 20 nodes VAG (TPP-R)

375

325

3.00 -

275

o
7—0%
| |
1

2.50 -

225 -

Token circulation period (s)

2.00 -

175 -

1.50 |
P L L P L

0.01 vStd 0.1

(a)

[

S
T

)
53
T

A/%;\

5
° L
E 100
Q
g o5
«<
S 9t
2wl —A— 20 nodes VAG (TPP-Q) 1
g —8— 30 nodes VAG (TPP-Q)
g nr —O— 20 nodes VAG (TPP-R) |
S 5k —%¢— 30 nodes VAG (TPP-R)]
+=
70]
“rE —‘.[/ %A
[E ¥ 1
60 Lot ‘ PR ‘
o1 vStd 0.1
(b)

Figure 11: The distributions of (a) token circulation period and (b) number of token visits to a member

under different vStds, with T, = 100ms.

narios) in a more light-weight manner, but it is hard to
ensure reliability with these protocols. In addition, some
protocols (e.g., MAODV and ADMR) are based on tree
structure; it is more costly to maintain a tree than a DAG
in networks of dynamic topology. For example, the CCy in
connected networks is O(n + x) for MAODV to maintain
a tree and O(x) for NASCENT to maintain a DAG.

6. SIMULATIONS

Having provided complexity-based comparisons to justify
the benefit of NASCENT, we use simulation to verify the
ability of NASCENT to support the envisioned applica-
tions.

6.1 Simulation Setup

We take ns-2.26 as the simulation platform. We use IEEE
802.11 with 2Mbps transmission rate as the wireless MAC
but reduce the nominal range from 250m to 100m, in or-
der to make our simulations more realistic. We adopt the
two-ray ground reflection model as the radio propagation
model.

We simulate VAGs with 20 and 30 nodes in a square area
of 1km?, during 200 seconds of simulated time. Initially,
members of a VAG are randomly distributed within a re-
gion of 250m x 250m such that they are in the “vicinity” of
each other. The movement pattern is defined by a group
mobility model similar to [42] where the following process
is repeated®: a VAG chooses a group speed uniformly dis-
tributed between zero and a maximum value as well as
a random direction, then each member chooses a veloc-
ity following a 2-D normal distribution parameterized by
the group speed and a standard deviation and begins to
move for a certain time period. Upon timing out, the
VAG remains static for some pause time. Both moving

5This model is not compatible with some of the cooper-
ative driving scenarios described in Section 2. Dedicated
traffic modeling should be applied for detailed investiga-
tions on these cases, so we leave it as future work.

10

time and pause time are described by a uniform distri-
bution between zero and a maximum value. Note that
assuming a random moving time instead of an arbitrary
destination partially solves the problem of decreasing av-
erage speed pointed out by [44]. In this mobility model,
the only parameter that has a significant impact on the
performance of NASCENT is the standard deviation of
individual member velocities (vStd hereafter). Therefore,
we fix the maximum value of group speed, moving time,
and pause time to 20m/s, 50s, and 10s, respectively, and
test NASCENT only under different vStds.

We set the beacon period to 200ms and test NASCENT
under 75 = 100ms and 10ms (defined in Section 4.3.3).
We also assume a 18-byte beacon message and a 50-byte
token message. Members perform NASCENT initializa-
tion within the first 2 seconds, then the member with the
smallest id (i.e., the sink) generates a token and starts to
circulate it. Each simulation is carried out 10 times with
different scenario files.

6.2 Stability of Token Circulation

In a static network, we say that the token circulation is
stable if the token visits every member in a cycle and the
period of a cycle remains constant. According to PROP-
ERTY 3, NASCENT meets this requirement. However, no
protocol can be qualified with this criterion in networks
with a dynamic topology and membership, notably be-
cause the token cannot visit a member temporarily bro-
ken from the network in the current cycle. Therefore, we
take an alternative criterion: a token circulation is stable
if (i) the distribution of the circulation period has a small
variance and (ii) the token visits each member infinitively
often. The stability of token circulation under different
vStds is a major performance index of NASCENT, because
a stable token circulation guarantees the correctness of up-
per layer distributed algorithms and indicates an effective
membership tracking.

Fig. 11(a) and (b) show the verification of the conditions

0.65 —r—r . ——
—&— 30 nodes VAG (TPP-Q)

—&— 20 nodes VAG (TPP-Q)
—¢— 30 nodes VAG (TPP-R)
I —O— 20 nodes VAG (TPP-R)
0.50 - -

0.60 -

0.55 -

0.45 -

0.40

0.35 [—

0.30 - T

Token circulation period (s)
/
\
1

0.25 - o -

0.20 |- T [

0.15 PR L L L R
vStd 0.1

(a)

850 n
800 § % —

8750 | I]
g \ 4
g 700 / |]
g A —&— 30 nodes VAG (TPP-Q) 4
59007 —A—20 nodes VAG (TPP-Q) .
Z 600 |- —#%— 30 nodes VAG (TPP-R) 1
% —O—20 nodes VAG (TPP-R) I]
Cé 550 |]
I+ - l

500 - s]

450 |- i/l \E i

400 L . .] ‘

001 vStd 0.1
(b)

Figure 12: The distributions of (a) token circulation period and (b) number of token visits to a member

under different vStds, with T, = 10ms.

(i) and (ii), respectively. The value of vStd in the figure is
the ratio between a standard deviation and a mean value
(the group speed for the polar distance of the velocity and
7 for the polar angle). Fig. 11(a) shows distributions of
the circulation period, and Fig. 11(b) presents distribu-
tions of the number of token visits to a member (a way to
check condition (ii) within limited simulation time). Each
distribution is characterized by a mean value and a stan-
dard deviation. The mean values of the circulation period
are all quite close to nTs, which matches the prediction by
PROPERTY 3 (2D,,4,:nT; can be neglected if Ty < Ts). In
the quasi-static scenarios with vStd = 0.01 (e.g., a group
of wireless game players in a moving train), the token is
stably circulated for both 20 and 30 node VAGs, since the
standard deviations of the circulation period and the num-
ber of token visits to a member are relatively small (mainly
due to the fluctuation of wireless links). The stability is
modestly degraded in scenarios with vStd = 0.1 and 0.2
(real life examples could be teamed robots).

In 20 node scenarios, the mean value of the token visit
number increases (along with a decrease of the mean value
of the token circulation period) when vStd increases from
0.01 to 0.1. This is due to the link breakage between a
few peripheral members and their VAGs (note that al-
though NASCENT allows partitioned components to have
their own token, individual members broken from a VAG
are considered to be leaving). Actually, we have to ad-
just the transmission range of wireless MAC to 120m for
vStd = 0.2, in order to keep the network from breaking
into many small components (where no application would
make sense). This exhibits an imperfection of the mobil-
ity model but not of NASCENT, because the movement
of a VAG member would be more coordinated than the
stochastic process that we use for modeling.

6.3 Circulating Token with Smaller 7

Fig. 11(a) shows that the token circulation period of NA-
SCENT is in the order of seconds. The main reason is that
we allow the token to stay Ts = 100ms at each member in

11

a cycle. Fig. 12 shows that, with 75 = 10ms, NASCENT
provides a circulation period of several hundred millisec-
onds. In practice, applications need a certain amount of
time to process backlogged operations upon acquiring the
token. Therefore, the value of Ty (and thus the circulation
period) is defined according to the processing capacity of
given devices.

For wireless multi-player gaming, Ts = 10ms is a reason-
able value, because the device needs only to exchange some
state information with the token. Therefore, the resulting
circulation period is short enough to prevent impatient
players from giving up the game. In the cases of cooper-
ative robotics, Ty might need to be relatively long consid-
ering that the behaviors of a token holder could involve
mechanical movements. Fortunately, a circulation period
in the order of seconds is tolerable, again due to the low-
speed mechanical movements involved in the applications
(an extreme case is exhibited by the Mars Exploration
Rover that has a top speed of 5cm/s).

6.4 Comparing TPP-Q with TPP-R

When network topology changes dynamically, both TPP-
Q and TPP-R perform well in most cases. However, we
have observed in simulations that there exist some spe-
cial situations where these algorithms fail to guarantee the
stability of token circulation. For example, in Fig. 13(a),
member a cannot pass the token to member b due to a
link breakage, but b is not aware of this until the breakage
is detected by LMTP after 7, beacon periods. TPP-Q, in
this case, leads to a virtual partition since members that
have sent requests to b will not receive the token in the
current cycle although the network is connected. A worst-
case scenario for TPP-R is shown in Fig. 13(b). Assume
that addr is used to break a tie, the token will follow the
path a — b — ¢ — - --. Therefore, the token will not visit
members to the right side of a before it revisits all mem-
bers to the left side of a. The significance of the effect of
the virtual partition shown in Fig. 13(a) depends on the
values of Ty and the beacon period. If they are compara-

— Directed logical link defined by request
@ Token holder

@© Member that has received the token in the current cycle

Physical link

(O Member that has not received the token in the current cycle

(a) (b)

Figure 13: Special cases where (a) TPP-Q and (b)
TPP-R fail to guarantee the stability of token cir-
culation.

ble or Ty is larger, the effect becomes less significant and
TPP-Q outperforms TPP-R, otherwise TPP-R wins. This
conclusion can be observed in Fig. 11 and 12. The conclu-
sion also suggests different application domains (defined by
required Ty and beacon period) for TPP-Q and TPP-R.

7. RELATED WORK

Several research areas are related to our proposal, includ-
ing network layer services (e.g., broadcast/multicast rout-
ing) as well as DAG or token-based distributed algorithms.
Note also that our proposal has the potential to support
mobile agent [10] in VAGs (in-depth discussions are omit-
ted). Having compared NASCENT with various network
layer services in Section 5.2, we now focus our discussion
on relevant distributed algorithms for ad hoc networks.

To our best knowledge, only two distributed algorithms for
ad hoc networks [26, 41] apply DAG as their basis. They
are the main inspirations of our proposal. Malpani et al.
[26] propose a leader election algorithm based on a DAG,
and Walter et al. [41] show that a DAG also supports
mutual exclusion. In both cases, the sink of the DAG al-
ways plays a special role (a leader in [26] and a token hold
that gains the access to a resource in [41]). However, the
authors do not mention that a DAG could be a common
basis for other distributed algorithms. Also, [41] considers
static groups without initialization and recomposition of
DAGs upon group forming and merging, while [26] applies
a mechanism similar to TORA to detect partitions and to
merge groups, which seems to be rather heavy for mobile
nodes. DAG based algorithms dedicated to unicast rout-
ing are described in [8, 4, 30]. We have discussed them
intensively in previous sections.

In wired networks, the token circulation is considered as
an efficient way to support various distributed algorithms
[2, 43, 27, 36, 29]. Therefore, researchers in ad hoc net-
works tend to extend it to mobile environments. Dolev et
al. [7] consider large scale networks with random mobility
patterns and thus turn to probabilistic approaches, which
results in a circulation period of O(n?). In the scenarios
we considered, the mobility pattern is more regular than
what is assumed in [7]; therefore, we can have a deter-
ministic protocol that circulates a token in a period linear
with n. Malpani et al. [25] propose several algorithms for

12

token circulation in small ad hoc networks. The idea of our
TPP-R is actually borrowed from their work. These algo-
rithms are more light-weight than NASCENT. The reason
is twofold: (i) all these algorithms are built upon routing
and even transport protocols (DSR+TCP) and thus do
not take care of link failures and (ii) the network member-
ship is (implicitly) assumed to be static, which excludes
the need for membership management. Unfortunately,
their approaches do not apply to VAGs. First, relying
on on-demand unicast routing and TCP actually results
in larger overall complexity (refer to the analysis in Sec-
tion 5.2). Secondly, membership management is necessary
for VAGs since perturbations (e.g., group forming, par-
tition, and merging) do happen. In addition, we realize
that pure token circulation protocols do not (at least not
efficiently) support all distributed algorithms. We build
our NASCENT at the network layer to reduce overhead
and integrate token circulation with a DAG to support
concurrent execution of various distributed algorithms.

8. CONCLUSION

In this paper, we have discussed several promising appli-
cations of mobile ad hoc networks. All these applications
involve only small scale networks and require mainly dis-
tributed coordination services, rather than pairwise con-
nections. We term the networks implied by these applica-
tions Vicinity Ad-hoc Groups (VAGs), which characterize
both the small scale and the group-oriented communica-
tion paradigms of these networks. The significance and
peculiarities of VAGs motivate us to reengineer network
layer protocols, in order to achieve both design time and
runtime efficiency for the distributed services required by
these applications.

Aiming at replacing routing protocols to support appli-
cations that involve only group-oriented communications,
we propose NASCENT (Network 1Ayer ServiCE for viciN-
iTy ad-hoc groups) dedicated to VAGs. NASCENT is the
first® to integrate a directed acyclic graph (DAG) with
token circulation in building a general network layer ser-
vice that concurrently supports various distributed ser-
vices. While the DAG is used to route messages to and
from a token holder and to bind VAG members together,
the circulated token grants temporary control to its hold-
ers. The two components greatly facilitate the implemen-
tation of distributed algorithms based on NASCENT. The
light-weight membership service embedded in NASCENT
requires only localized operations, which is a key to mak-
ing NASCENT feasible in VAGs. NASCENT also includes
new algorithms to initialize a token-oriented DAG among
an emerging VAG and to recompose the DAG upon the
VAGs’ merging. These are also crucial functions for cop-
ing with the transiency of VAGs.

In order to defend our claim that NASCENT is an efficient
network layer service for VAG members, we have given ex-

6Combining logical structure with token passing appeared
in [36] and was then introduced into ad hoc networks by
£41], but these contributions did not consider token circu-
ation.

amples of distributed algorithms that can be built on top
of NASCENT and perform both complexity-based analysis
and simulations for NASCENT. The examples and analy-
sis show that the complexity of maintaining NASCENT
is of the same magnitude as unicast routing protocols,
but that NASCENT greatly reduces the complexity of
building and running distributed algorithms, compared to
unicast and broadcast/multicast routing protocols as well
as flooding. Further simulations prove the feasibility of
NASCENT, in the sense that it circulates a token stably
and timely even when networks undergo topology changes
due to node mobility.

In terms of future work, we intend to focus on one of the
discussed applications, for which a real implementation
of NASCENT will be carried out. We expect to gather
more data on the performance of NASCENT in different
environments with the implementation and field tests; this
will further motivate the deployment of NASCENT.

9.
1]

REFERENCES

C. Carter, S. Yi, P. Ratanchandani, and R. Kravets.
Manycast: Exploring the Space between Anycast
and Multicast in Ad Hoc Networks. In Proc. of ACM
MobiCom’03, 2003.

J.M. Chang and N. Maxemchuck. Reliable Broadcast
Protocols. ACM Trans. on Computer Systems,
2(3):251-273, 1984.

K. Chen and K. Nahrstedt. Effective
Location-guided Tree Construction Algorithms for
Small Group Multicast in MANET. In Proc. of
IEEE INFOCOM’02, 2002.

M.S. Corson and A. Ephremides. A Distributed
Routing Algorithm for Mobile Wireless Networks.
Wireless Networks, 1(1):61-81, 1995.

S.K. Das, B.S. Manoj, and C. Siva Ram Murthy. A
Dynamic Core Based Multicast Routing Protocol for
Ad Hoc Wireless Networks. In Proc. of ACM
MobiHoc’02, 2002.

X. Défago. Distributed Computing on the Move:
From mobile computing to cooperative robotics and
nanorobotics. In Proc. of ACM POMC’01, 2001.

S. Dolev, E. Schiller, and J. Welch. Random Walk
for Self-Stabilizing Group Communication in
Ad-Hoc Networks. In Proc. of IEEE SRDS’02, 2002.

E. Gafni and D. Bertsekas. Distributed Algorithms
for Generating Loop-Free Routes in Networks with
Frequently Changing Topology. IEEE Trans. on
Communications, 29(1):11-18, 1981.

J.J. Garcia-Lunes-Aceves. Loop-Free Routing Using
Diffusing Computations. IEEE/ACM Trans. on
Networking, 1(1):130-141, 1993.

R.S. Gray, G. Cybenko, D. Kotz, and D. Rus.
Mobile agents: Motivations and State of the Art. In
Jeffrey Bradshaw, editor, Handbook of Agent
Technology. AAAT/MIT Press, 2002.

[10]

13

[11]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Z.J. Haas and B. Liang. Ad Hoc Mobility
Management with Uniform Quorum Systems.
IEEE/ACM Trans. on Networking, 7(2):228-240,
1999.

V. Hadzilacos and S. Toueg. Fault-tolerant
broadcasts and related problems. In Distributed
Systems, chapter 5, pages 97-145. Addison-Wesley, 2
edition, 1993.

C.-S. Hsu and Y.-C. Tseng. An Efficient Reliable
Broadcasting Protocol for Wireless Mobile Ad Hoc
Networks. In Proc. of IASTED NPDPA’02, 2002.

J.G. Jetcheva and D.B. Johnson. Adaptive
Demand-Driven Multicast Routing in Multi-Hop
Wireless Ad Hoc Networks. In Proc. of ACM
MobiHoc 01, 2001.

L. Ji and M.S. Corson. Differential Destination
Multicast - a MANET Multicast Routing Protocol
for Small Groups. In Proc. of IEEE INFOCOM’01,
2001.

D.B. Johnson, D.A. Maltz, and Y-C. Hu. The
Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR), April 2003. Internet-Draft,
draft-ietf-manet-dsr-09.txt. Work in progress.

C.V. Jones and Maja J. Matari¢. Communication in
Multi-Robot Coordination. Technical report, USC
CRES-04-001, 2004.

M.-0O. Killijian, R. Cunningham, R. Meier,
L. Mazare, and V. Cahilli. Towards Group

Communication for Mobile Participants. In Proc. of
ACM POMC’01, 2001.

U. Kozat and L. Tassiulas. Network Layer Support
for Service Discovery in Mobile Ad Hoc Networks. In
Proc. of IEEE INFOCOM’03, 2003.

S.-J. Lee, W. Su, and M. Gerla. On-Demand
Multicast Routing Protocol in Multihop Wireless
Mobile Networks. ACM/Kluwer Mobile Networks
and Applications, 7(6):441-453, 2002.

J. Liu, K. Sohraby, Q. Zhang, B. Li, and W. Zhu.
Resource Discovery in Mobile Ad Hoc Networks. In
M. Ilyas, editor, Ad Hoc Wireless Networks,
chapter 26. CRC Press, 2003.

M. Lott, R. Halfmann, E. Schulz, and

M. Radimirsch. Medium Access and Radio Resource
Management for Ad Hoc Networks based on UTRA
TDD. In Proc. of ACM MobiHoc’ 01, 2001.

W. Lou and J. Wu. Double-Covered Broadcast
(DCB): A Simple Reliable Broadcast Algorithm in
MANETS. In Proc. of IEEE INFOCOM’0/, 2004.

J. Luo, P.Th. Eugster, and J.-P. Hubaux. Route
Driven Gossip: Probabilistic Reliable Multicast in
Ad Hoc Networks. In Proc. of IEEE INFOCOM’03,
2003.

[25] N. Malpani, N. H. Vaidya, and J. L. Welch.
Distributed Token Circulation in Mobile Ad Hoc
Networks. In Proc. of IEEE ICNP’01, 2001.

[26] N. Malpani, J. Welch, and N. Vaidya. Leader

Election Algorithms for Mobile Ad Hoc Networks. In

Proc. of ACM DIAL-M’00, 2000.

[27] N. Maxemchuck and D. Shur. An Internet Multicast

System for the Stock Market. ACM Trans. on

Computer Systems, 19(3):384-412, 2001.

S. Nesargi and R. Prakash. MANET conf:
Configuration of Hosts in a Mobile Ad Hoc Network.
In Proc. of IEEE INFOCOM’02, 2002.

S. Nishio, K.F. Li, and E.G. Manning. A Resilient
Mutual Exclusion Algorithm for Computer
Networks. IEEE Trans. on Parallel and Distributed
Systems, 1(3):244-355, 1990.

[30] V.D. Park and M.S. Corson. A Highly Adaptive
Distributed Routing Algorithm for Mobile Wireless
Networks. In Proc. of IEEE INFOCOM’97, 1997.

[31] C.E. Perkins, E.M. Belding-Royer, and S.R. Das. Ad

hoc On-Demand Distance Vector (AODV) Routing,

2003. RFC 3561 (draft standard). IETF.

[32] C.E. Perkins and P. Bhagwat. Highly Dynamic

Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers. In Proc. of ACM

SIGCOMM’94, 1994.

[33] R. Prakash and R. Baldoni. Architecture for Group

Communication in Mobile Systems. In Proc. of

IEEE SRDS’98, 1998.

[34] J.K. Redi. Wireless Networking for Mobile Robots.
In Invited talk for Winlab/Berkeley FOCUS’99, 1999.

[35] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink,
and W. Schulz. CarTALK 2000 - Safe and
Comfortable Driving Based Upon
Inter-Vehicle-Communication. In Proc. of IEEE
1V°02, 2002. http://www.cartalk2000.net.

[36] G. Ricart and A.K. Agrawala. Author’s Response to

‘On Mutual Exclusion in Computer Networks’ by

Carvalho and Roucairol. Communications of the

ACM, 26(2):147-148, 1983.

G.-C. Roman, Q. Huang, and A. Hazemi. Consistent
Group Membership in Ad Hoc Networks. In Proc. of
IEEE/ACM ISCE’01, 2001.

E.M. Royer and C.E. Perkins. Multicast Operation
of the Ad-hoc On-demand Distance Vector Routing
Protocol. In Proc. of ACM MobiCom’99, 1999.

E.M. Royer and C.-K. Toh. A Review of Current
Routing Protocols for Ad Hoc Mobile Wireless
Networks. IEEE Personal Communications,
6(2):46-55, 1999.

14

[40] A. Schiper. Failure Detection vs Group Membership
in Fault-Tolerant Distributed Systems: Hidden
Trade-Offs. In Proc. of PAPM-ProbMiV’02, LNCS
2599, 2002.

J.E. Walter, J.L. Welch, and N.H. Vaidya. A Mutual
Exclusion Algorithm for Ad Hoc Mobile Networks.
Wireless Networks, 7(6):585-600, 2001.

K.H. Wang and B. Li. Efficient and guaranteed
service coverage in partitionable mobile ad-hoc
networks. In Proc. of IEEE INFOCOM’02, 2002.

B. Whetten, T. Montgomery, and S. Kaplan. A High
Performance Totally Ordered Multicast Protocol. In
Theory and Practice in Distributed Systems, LNCS
938, 1994.

J. Yoon, M. Liu, and B. Noble. Random Waypoint
Considered Harmful. In Proc. of IEEE
INFOCOM’03, 2003.

APPENDIX. PSEUDOCODES FOR TOKEN

PASSING PROTOCOL (TPP)
We report the two algorithms of TPP together for com-
pactness, but prefix [Q] and [R] to the lines of code dedi-
cated to TPP-Q and TPP-R, respectively. Lines of codes
without prefix are common to both algorithms.

name functions
epoch A counter that logs which cycle of token
circulation the member is in.
TPP-Q | regsent A pointer that directs to another member

to which a token request has been sent.
Q A queue that stores token requests
(token_regs) from neighbors.

TPP-R | recency An array that records the time when the
token visited each neighbor recently. The
information is piggybacked with the token.

both tokenheld | A flag that designates whether the member

holds the token or not.

Table 3: Variables used by TPP.

Table 3 shows the variables used by TPP. Each token_req
is a triple [saddr, epoch, arv_seq], which denotes the addr
and epoch of a requester, as well as a sequence number
increased by each new item. Operations on Q are based
on 3 primitives: ENQUEUE(), DEQUEUE(), and DELETE().
ENQUEUE() inserts an item in a queue following a lexico-
graphical order of [epoch, arv_seq|; a newly inserted item
annihilates an existing one from the same saddr. DEQUEUE()
removes the item at the queue header and returns the cor-
responding saddr. Items can also be removed from a queue
by DELETE(). TPP also maintains a timer token_timer
and sets it whenever the member hands on the token to
another member. If it times out before the token returns,
the member suspects a partition and attempts to regener-
ate a token.

There are four events that can trigger actions of TPP. We
discuss them one by one.

VIEWCHG

LMTP generates a VIEWCHG event when the [view is
changed (e.g., by any bsms or by the PREVER primitive).
Fig. 14 shows how TPP responds to this event. The ac-
tions are taken only if the request queue is not empty,
which excludes the initialization phase but includes the
merging phase. If a token holder detects a group merg-

1: upon ViEwChc do
if |Q;| # 0 then
if tokenheld; N (token.gid > lview;.gid) then
tokenheld; <« false; STORE(token)
[Q] FWDpREQ(ture)
else
[Q] priority «— min.eo, {req.epoch}
for all nid ¢ lview; and
all nid € lview; s.t. nid < id; do
9: [Q] DELETE(Q;, nid.addr)

10: if id; > minnidewiew; {nid} then

11: if (id; < regsent;) V (regsent; &€ lview;) then
12: [Q] FWDREQ(true)

13: else if priority # min,e g, {req.epoch} then
14: [Q] FwDREQ(false)

15: else

16: [Q] regsent; «— id;

17: procedure FwWpREQ(redirect)

18: if redirect then

19: regsent; <— minmdemwi{nid}

20: token_req.saddr <« addr;

21: token_req.epoch «— mingeo, {req.epoch}

22:

SEND(token_req) to regsent;.addr

Figure 14: Response to VIEWCHG in TPP of mem-
ber ¢

ing and has to give up its right to hold the token due to a
smaller new g¢id, it stores the token and forwards a request
(lines 3-5). Otherwise, any request from a previously in-
coming but currently missing or outgoing link is removed
from the queue (lines 8-9). Then TPP decides if a token
request should be rerouted due to the view changes. A
request is rerouted if this member does not become a sink
and (i) the link between this member and its regsent is ei-
ther reversed or broken (lines 11-12) or (ii) the priority of
the queue, indicated by the request with minimum epoch,
is changed (lines 13-14). Otherwise the request is rerouted
upon next VIEWCHG resulting from an invocation of the
PREVER primitive (lines 15-16). Note that all operations
related to the request queue are triggered only for TPP-Q.

upon RECV(token_req) from id; do
if (|Q;| #0) A (id; < id;) then
(Q] priority «— mineo, {req.-epoch}
[Q] ENQUEUE(Q;, token_req)
if priority # min,geg; {req.epoch} then
[Q] FWDREQ(false)
if Anid € liew; s.t. nid = id; then
INSERT (lview;, idj) /* incur VIEWCHG */

Figure 15: Response to the reception of a token
request in TPP of member i

RECV(token_req)

The reception of a token_req triggers actions of TPP-Q
only if the member is not in the initialization phase and
the requester has an outgoing link towards this member, as
shown in Fig. 15 (line 2). The newly received request is put

15

into the queue, and the request is forwarded if the priority
of the queue is changed by this request (lines 3-6). The
reception of messages other than bmsg, such as token_req
and token, is also considered as an input of LMTP (lines
7-8).

REcV(token)

If there is a token stored locally (as a result of group merg-
ing, see Fig. 14 line 4), the member merges the two tokens
(Fig. 16 lines 2-3). While TPP-R decides if to deliver the
token according to local recency information after updat-
ing its recency array, TPP-Q delivers the token only if it
is the first in the queue, otherwise it forwards the token
and a request (lines 4-15).

1: upon Recv(token) from id; do

2: if ISSTORETOKEN() then

3: MERGETOKEN(token)

4: [R] recency; <« token.recency /* for neighbors only */
5: if recency;[id;] has the minimum value in recency; then
6: [R] tokenheld « true

T [R] DELIVER(token) /* to the upper layer */
8: [R] recency,[id;] « current time

9: else

10: [R] RELEASE(token)

11: Q] regsent; <« GETIDINVIEW(lview;, DEQUEUE(Q;))
12: if regsent; = id; then

13: Q] tokenheld « true

14: [Q] DELIVER(token) /* to the upper layer */
15: else

16: [Q] SEND(token) to regsent;.addr; FWDREQ(false)

17: if #nid € lview; s.t. nid = id; then

18: INSERT(lview;, id ;) /* incur VIEWCHG */

Figure 16: Response to the reception of the token
in TPP of member 1

RELEASE(token)

This event occurs when the upper layer algorithms finish
using the token and return it to NASCENT. TPP-R sim-
ply gives the token to the least recently visited neighbor
and piggybacks the recency information (Fig. 17 lines 2-3).
TPP-Q passes the token to the requester whose request is
the first in the queue. Then it changes its state variables

1: upon RELEASE(token) do

: [R] token.recency <« recency;
3 [R] SEND(token) to nid.addr

s.t. recency,[nid] has the minimum value in recency;

4 [Q] regsent; <« GETIDINVIEW(lview;, DEQUEUE(Q;))
5: [Q] SEND(token) to regsent;.addr
6: [Q] tokenheld; <« false; epoch; <« epoch; + 1
7 [Q] req.saddr «— addr;; req.epoch «— epoch,
8 [Q] ENQUEUE(Q;, req)
9 [Q] FwpREQ(false)

token_timer; <« O
11: upon TivMEOUT(token_timer;, Tper) do
12: init; <— true; init_timer; <« 0
13: liew;.gid.f — lview;.gid.f — 1
14: lview;.gid.addr «— addr;

Figure 17: Response to the release of the token in
TPP of member i

and forwards a token request for the next cycle. In both
cases, the token_timer is set in order to detect group parti-
tions (lines 4-10). Upon token_timer times out, a member
starts a new initialization phase with a smaller gid (Fig. 17
lines 11-14).

