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MRI in 5-D Simplifies

Regularization and Segmentation
of White Matter Tracts

Lisa Jonasson*, Xavier Bresson, Jean-Philippe Thiran, Van J. Wedeen, and Patric Hagmann

Abstract—We present a new five-dimensional (5-D) space repre-
sentation of diffusion magnetic resonance imaging (AMRI) of high
angular resolution. This 5-D space is basically a non-Euclidean
space of position and orientation in which crossing fiber tracts can
be clearly disentangled, that cannot be separated in three-dimen-
sional position space. This new representation provides many pos-
sibilities for processing and analysis since classical methods for
scalar images can be extended to higher dimensions even if the
spaces are not Euclidean. In this paper, we show examples of how
regularization and segmentation of dMRI is simplified with this
new representation. The regularization is used with the purpose
of denoising and but also to facilitate the segmentation task by
using several scales, each scale representing a different level of res-
olution. We implement in five dimensions the Chan—Vese method
combined with active contours without edges for the segmentation
and the total variation functional for the regularization. The pur-
pose of this paper is to explore the possibility of segmenting white
matter structures directly as entirely separated bundles in this 5-D
space. We will present results from a synthetic model and results
on real data of a human brain acquired with diffusion spectrum
magnetic resonance imaging (MRI), one of the dMRI of high an-
gular resolution available. These results will lead us to the conclu-
sion that this new high-dimensional representation indeed simpli-
fies the problem of segmentation and regularization.

Index Terms—diffusion magnetic resonance imaging (MRI), five
dimensional level sets, white matter segmentation and position ori-
entation space.

I. INTRODUCTION

IFFUSION magnetic resonance imaging (dMRI) is a
modality that permits noninvasive quantification of water
diffusion in living tissues. The tissue structure affects the
Brownian motion of the water molecules, which leads to an
anisotropic diffusion. Today, a diffusion tensor (DT) model [1],
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[2] is the most frequently used method to map the structural
anisotropy. The tensor model, which basically only contains
information about anisotropy and principal diffusion direction,
has limited capabilities of resolving complex brain white matter
architectures, particularly in regions with fiber crossings [3].

A recent approach, first presented by Wedeen et al. in [4],
and fully developed in [5], is diffusion spectrum imaging (DSI).
This technique is based on the g-space theory first presented by
Callaghan [6] in 1990 and further developed by Cory and Gar-
roway [7]. Wedeen et al. demonstrated that the q-space approach
is feasible in vivo and can be used to resolve complex fiber ori-
entation by construction of the a full 3-D probability density
function (PDF) of the diffusion at each location [5]. This PDF
provides a detailed description of the diffusion and manages to
resolve complex tissue architecture such as fiber crossings [8].
For simplicity, the PDF is normally reduced to an orientation
density function (ODF), which is the radial projection of the
PDF. Other approaches such as g-ball imaging [9], spherical
deconvolution [10], and persistent angular structure (PAS) [11]
aim at directly obtaining the ODF without first measuring the
PDF.

The brain white matter is made of nerve fibers which are
organized in bundles or tracts—sets of fibers that have close
endpoints and similar trajectories. The process of fiber trac-
tography aims at inferring fiber trajectories by computing lines
of maximal diffusion coherence through the data. By appro-
priate selection, bundles of interest can be visualized [12]. Such
tractography methods are in general used to map cerebral con-
nectivity throughout the brain [13], [14]. However a fiber tract is
not only a set of lines but can also be considered as a single ob-
ject that one may want to identify, in order to analyze its shape
or to measure some intrinsic properties. Jonasson et al. [15] pre-
sented a 3-D geometric flow algorithm designed for segmenting
fiber tracts as regions in a DT-MRI data, which is however lim-
ited in areas of fiber crossings because of the limited angular
resolution of DT-MRI.

In many image processing problems the goal is often to re-
duce the dimensionality of the data, but sometimes it can ac-
tually be useful to augment it. Hagmann et al. [16] proposed
to model dMRI data as a scalar field on a discrete five-dimen-
sional (5-D) space and use a Markov random field segmentation
methodology to identify fiber tracts in the brain [16]. Following
this early work, we discuss a level set based technique imple-
mented on a continuous 5-D space for segmenting and regular-
izing fiber tracts from dMRI data of high angular resolution.
The original contribution of our paper is mainly the exploration
of the possibility of segmenting white matter structures directly
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as separate bundles in 5-D space and the implementation of the
well known segmentation method, total variation (TV) flow, in
a 5-D space.

II. BACKGROUND THEORY

First, we explain how position-orientation space (POS)—our
5-D space—is mathematically constructed and how it can be
obtained from the dMRI data. We then explain the regulariza-
tion and segmentation techniques used. They are based on clas-
sical partial differential equations (PDE) in N-dimensions. The
method used for the segmentation is the Chan—Vese approach,
“Active contours without edges” [17] implemented using the
level set method proposed by Osher and Sethian [18]-[20]. The
level set formalism is defined for /V-dimensions and we show
how to practically apply it in a 5-D non-Euclidean space, with
an emphasis on the computation of the mean curvature in five di-
mensions for contour regularization. The regularization is used
both for denoising and to link the scales in a multiresolution ap-
proach and is done by the TV flow [21], [22].

A. Position Orientation Space

A diffusion MRI experiment of high angular resolution (such
as DSI [5], Q-ball [23], spherical deconvolution [10], and PAS
[11]) provides a 3-D map of ODFs. Thus, for every position
vector (z,,z) in Euclidean 3-D space, namely R?, there is
an ODF measuring the intensity of diffusion in any orienta-
tion (¢, f) restricted to the unit sphere, namely $2, with the az-
imuthal angle 6 € [0,27) and the polar angle ¢ € [0, x]. The
POS, called 2, is defined by the direct Cartesian product of the
vector spaces R* and $? such that a non-negative scalar function
I defined in the POS is as follows:

I: Q=R®xS$%>—RT,

w=(z,y,2,0,0) = I[(w). (1)

This new vector space comes equipped with a metric, namely
gq, derived from a tensor direct sum such as

go = grs D gs2

also expressed by

9o = diag(grs, gs2), 2)
where the matrix diag(Aj,...,Ax) is a diagonal matrix
in which the diagonal is given by (Aj,...,Ax) where
Ai1<i<r can be either scalar or matrix, the standard Eu-
clidean metric is given by ggrs(z,y,2) = (6;;) whose 6;;
is the Kronecker function and 1 < ¢,5 < 3 are the indices
of the tensor, and the standard spherical metric is provided
by gs2(p,0) diag(1,sin? ¢). The metric tensor (2) of
the POS allows to compute the distance between any two
points on the manifold 2. Indeed, in a Riemannian mani-
fold, the length of segment of a curve parametrized by p,
from p; to po, is defined by the formula (given in, e.g., [24])

S22 S22 i1 (90)ij(dwi dp(deo; /dp)dp, (g s the (i, )th
component of the tensor go, wi<i<s,wi<j<s € {Z,y, 2, ,0}.
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Fig. 1. Example of POS for a 2-D slice of a volume of ODFs. (a) The 2-D
field of ODFs. (b) Intensity is plotted for each angle, 6. (c) If the angle, 6, is
not considered the crossing fibers cannot be separated. (d) Angle 8 constitutes
the third dimension of the space and the value in each position is the intensity,
I. Hence, in three dimensions the two fibers can be segmented as two separate
structures.

It also provides the gradient operator defined on this non-Eu-
clidean space that will be useful later

Vo =1/(92) " Vas 3)
which simplifies to
7] 7] 7] 7] 1 9
Vo = T o Yy z2 a9 - . - 4
Q= (3:B+e“'8y+e 02+e(’°8<p+eesm<p89 @

given a 5-D standard basis (e,, ey, e, e, eg) and the operator
()T as the inverse tensor transpose.

To get some intuition about what POS is and why it is useful
for fiber tract segmentation, it is instructive to consider the case
of a 2-D map of ODF restricted to a plane. In Fig. 1(a), a 2-D
slice of ODFs is shown. The slice shows a crossing between two
fiber tracts. The ODFs in the figure are restricted to the plane
and can therefore be described through only one angle, 6. The
intensity of the ODF varies with the angle. In the case where we
only have one fiber there will be one peak intensity for the angle
that corresponds to the direction of the fiber. In positions where
two fiber tracts cross there will be two intensity peaks, one for
the direction of each fiber. These two cases are illustrated in
Fig. 1(b).

The third dimension, #, represents the orientation of diffu-
sion; hence, the 2-D ODF map is mapped as a 3-D scalar field.
This means that even though the two fiber tracts cross over in
2-D, they will be separated in 3-D and can therefore easily be
segmented as two independent structures. Fig. 1(d) shows how
the two fiber tracts that cannot be separated in 2-D [Fig. 1(c)]
can be segmented in 3-D where the angle, f, constitutes the third
dimension. In Fig. 2, an example of a slice from a 3-D volume
of ODFs is shown. The ODFs are here described by two angles
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Fig. 2. (a) Slice of a synthetic 3-D volume of ODFs. (b) The intensity, I, of the
different angles, (, ), plotted against each other. (c) The synthetic fiber tracts
have been segmented in 5-D and projected back into 3-D.

and the segmentation is done in 5-D and then projected back in
3-D for visualization.

B. Segmentation in the Position Orientation Space

1) Level Set Method in the N-D Euclidean Space: Since
the level set method was introduced by Osher and Sethian
[18]-[20], it has become a more and more popular analytical
and numerical tool for image processing, fluid mechanics,
graphics, computer vision, etc. It is basically used for tracking
moving fronts by considering the front as the zero level set
of an embedding function, called the level set function. In
image processing, the level set method is most frequently used
as a segmentation tool through propagation of a contour by
using the properties of the image as well as properties of the
contour itself, such as the mean curvature. It was originally
used to detect edges in an image [25], [26], but more recent
applications detect textures, shapes, colors, etc. One of the
main advantages of the level set theory is its natural extension
to N-dimensional images, which is usually difficult to achieve
with standard segmentation models. Thus, the extension to
three-dimensional images is commonly used, e.g., [27], and
even though some of the properties of the 2-D curves, such as
the property of shrinking to a point under curvature flow, do not
hold in the 3-D case, the main part of the theory remains valid
and works well for segmentation of 3-D objects. The extension
to even higher dimensions is straightforward, which will allow
us to use the level set method in the 5-D POS.

In the rest of this section, we introduce the basics of the level
set method in the N-D Euclidean space. Let the level set func-
tion, ¢(x,t), be a smooth function where x = (z1,...,2y) €
RN,t € R*. The (N — 1)-D hypersurface in N-dimensions is
represented by the zero level set of ¢ such that S(t) = {x €
RY : ¢(x,t) = 0}. Then the evolution of the hypersurface,
embedded in the level set function, is described through the fol-
lowing general partial differential equation (PDE) in any dimen-
sion [18]-[20]:

d¢
ot FVé| &)
where F'is a speed function depending on the given application.

A fundamental task in the level set framework is the regu-
larization/smoothing of the moving interface to get satisfactory
segmentation results. For this particular case, the speed function
is usually based on the mean curvature x whose general expres-
sion in N-D is as follows:

= —K = — . —V¢
F= <|v¢|>' ©
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For this particular function F', (5) becomes the well-known
Euclidean mean curvature flow or Euclidean shortening flow.
In 2-D, the developed expression of the mean curvature is as
follows:

v <| vol) = @z O

The expression of the mean curvature is naturally longer in
3-D and even more in higher dimensions. For example, com-
puting the curvature formula for 5-D, Mathematica gives a sev-
eral-pages-long answer that is obviously not satisfactory from a
numerical point of view. Fortunately, a lot of work has already
been done for IN-D mean curvature flows [28], [29]. Hence, we
propose to use the theory developed by Ambrosio and Soner
[28] to determine the mean curvature of a (N — 1)-D hypersur-
face embedded in the Euclidean /N-D space.

As explained in, e.g., [24], the mean curvature of a smooth
hypersurface, S, is described by the mean of the principal cur-
vatures {x; }1<i<n—1 of S as follows:

ki+---+KN-1
K= N1 . ®)
In [28], Ambrosio and Soner showed that the N — 1 principal
curvatures of a hypersurface S, represented by the zero level set
of a function ¢ : RN — R* such that S = {x € RV : ¢(x) =
0}, are given by the N — 1 smallest eigenvalues of the following
N x N symmetric matrix:

1
= WP o) V2 H(%) Pogx) &)

where V2 is the N x N Hessian matrix and P, is a projection
operator onto the space normal to the nonzero vector p € RV
defined as

J(x)

PRP

P=1—
lp|?

p =

(10)

where 1 is the identity matrix and ® is the tensor product.
Hence, the practical calculation of the mean curvature of a
(N —1)-D hypersurface is numerically done by first computing
the matrix .J then determining its eigenvalues.

We now introduce the efficient image segmentation model of
Chan and Vese for N-D scalar images. The model of Chan and
Vese presented in [17] is a method for segmenting scalar images
based on homogenous region detection by using the weak for-
mulation of the influential Mumford and Shah functional [30].
The variational model of Chan and Vese is as follows:

min

inCin>Cout

=Per(Sin) + A /
Js

{ECV(Sin7 Cin;, Cout /\)
(Cin — u(x))2 dx

in

aaf oo e =00 ix|

where wu is a given scalar image, S;, is a closed subset of the
image domain R whose boundary is the hypersurface S,
Per(Siy,) is the perimeter of the set S, i.e., the hyper-area of

(11
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the hypersurface S, A is an arbitrary positive parameter which
controls the tradeoff between the regularization process and
the fidelity of the solution with respect to the original image
u, constants cjy, Coyt are in R, and dx = dxy...dzy is the
infinitesimal invariant volume in the N-D Euclidean space. The
variational model (11) determines the best approximation, in
the L2-sense, of the image u as a set of (nonconnected) regions
with only two different values c;,, and coyt. As noticed in [17],
if S;, is fixed, the values ¢;, and coy¢ Which minimize the
energy Fcvy are the mean intensity values inside and outside
S. Finally, the term Per(.S;,) imposes a smoothness constraint
on the geometry of the set Sj,, i.e., the hypersurface S, which
separates the piecewise constant regions. Chan and Vese repre-
sent the regions Sj, and its complementary RN \ Sin with the
Heaviside function, H, of a level set function ¢ as follows:

E(Qj\/'(qu Cin, Cout )\) '
[ 196 x| [H609) (o -ut)?
JRN JRN

+ H(=¢(x)) (Cont — u(x))” } dx.

12)

The flow minimizing Energy EZ,, with respect to ¢ is the
following:

56 V(x,t)
5 (6 1) = 8((x, 1)) [V ‘ <W>

—Mein — u(x))? + Mcout — u(x))ﬂ (13)

where ¢ is the Dirac function. As we said, ¢;, and ¢yt Which
minimize Energy FZ,; are respectively the intensity averages in
the regions S;, = {x € RN : ¢(x,t) > 0} and RN \ S,
{x € RN : ¢(x,t) < 0} such that

Joon H($())u(x)dx

Jon H(6(x))dx

Jion (H(=¢(x))u(x)dx
S (H(=9(x)))dx

Cin =

(14)

Cout =

2) Level Set Method in the POS: In this section, we apply
the previous theory defined in the /N-D Euclidean space to the
POS by taking the geometric counterparts such as the gradient,
the curvature, and the intensity average defined in the POS.

Let alevel set function ¢(w, t), where w = (z,y, z, ¢, 0) € Q
as defined in (1) and ¢t € R, be a smooth function defined in
the 5-D POS. Then a 4-D hypersurface is represented by the zero
level set of ¢ such that S(¢) := {w € Q : ¢(w,t) = 0}.

The counterpart of the segmentation model of Chan and Vese
[17] defined in (13) is as follows:

% VQQIﬁ(&),If) )
ot | VQ¢(w7t) |

=ein = I())* + Alcg,

out

(w,t)

3(6(et)|Var- }
I(w))*| (15)

where I(w) is a given scalar image in the POS, V, is the gra-
dient operator in the non-Euclidean POS defined in (3), ¢£2, ¢!

out

are the intensity averages in the regions Sy, = {w € Q :
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Fig. 3. Hyper-cube evolving under 5-D mean curvature flow. (a) x—z-plane.
(b) y—6-plane.

P(w,t) > 0} and Q@ \ Sip = {w € Q : ¢(w,t) < 0} taking
into account the non-Euclidean geometry of the POS such that

o ., H(@(w))I(w)dw
[ H(é(w)dw
o _ J (HE=s@)I(w)dw
out T [ (H(=¢(w)))dw

(16)

C

where dw = sin pdxdydzdpdf is the infinitesimal invariant
volume in the POS. The term Vg - (Va¢/| Vaé |) in (15)
plays the role of the mean curvature of the level sets of ¢ in
the non-Euclidean POS. It is computed by strict analogy of the
approach proposed by Ambrosio and Soner [28] described in
the previous section. Thus, the mean curvature of the 4-D sur-
face embedded in the 5-D POS is the average value of the four
smallest eigenvalues of the following 5 x 5 symmetric matrix:

1
J(w) = WPVnrb(w)V?qu(w)PVmb(w)- (17)
We have tested the curvature term of (15) on a synthetic surface
by evolving a 5-D hyper-cube through the mean curvature flow
and seen how it first turns into a hyper-sphere and then finally
shrinks to a point; see Fig. 3.

We have defined in this section the level set-based segmenta-
tion model. Once the POS was defined in Section II-A, we have
seen that a scalar image in the POS is not too different from a
classical gray-scale image. The specific considerations except
for the high number of dimensions are the periodicity of the an-
gles (¢, #) and the computations of the gradient, the curvature
and the intensity average defined in the POS. From a theoretical
point of view, the PDE (15) looks straightforward to implement
but is practically difficult. One of the main problems is handling
the storage of the huge amount of data that is treated. Optimizing
the computation of the level set function and its reinitialization
are thus crucial.

C. Multiresolution Segmentation Using Total Variation-Flow

The 5-D POS contains a multitude of fibers and it is hard to
determine an appropriate initialization for the segmentation.
By using a multiresolution segmentation approach [31], [32],
we reduce the number of possible fiber tracts to segment and
facilitate the finding of the major tracts. The segmentation
is therefore first done on a highly smoothed image to catch
the main shape of the tract. The segmentation is then succes-
sively refined by augmenting the resolution of the 5-D space.
A well-known problem with the level set method is that the
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solution is always a local minimum. By performing the seg-
mentation task at different scales, the multiresolution approach
avoids many nonoptimal minima. The resolution reduction is
performed scale by scale with anisotropic filtering/diffusion,
a method that smoothes the image while keeping the edges.
Many anisotropic diffusion methods have been suggested in the
literature; for a review, we refer to [33]. We have chosen the
total variation (TV) flow to perform the multiscale regulariza-
tion in the POS.

The idea of minimizing the total variation norm of a function
u € LY(RYN)

TV (u) = / | Vu(x) | dx (18)
RN

for image processing purposes was first introduced by Rudin,
Osher, and Fatemi in [21]. This functional does not penalize dis-
continuities so the image is smoothed while keeping the original
edges. The standard minimization of the TV-flow is done by the
gradient descent method which yields the following equation
[22]:

ou Vu(x,t) ) (19)

==V <| Va0 ]

where ¢ € R is introduced as usual. Here, u(x, t) is what we
call the multiscale/multiresolution image. A multiscale image is
a representation at a continuum of scales ¢, embedding the orig-
inal image u(x,t = 0) into a family u(x,¢ > 0) of gradually
smoother and simplified versions. As in the previous section,
we define the TV-flow in the POS by strict analogy with the Eu-
clidean case. The TV-flow in the POS is thus defined by

%%@4w::vg-( Yalle,?) )

[Vol(wf)] 20
with I(w,t) : (Q,RT) — R*.

III. METHOD AND IMPLEMENTATION

A. Creating POS

We construct the 5-D POS from a 3-D map of ODF. The data
is stored in a 5-D matrix where the first 3-D code for the location
and the last two dimensions for the orientation. The spherical
geometry of the space in the ODF yields a periodicity in the data.
Because the ODF is a symmetric function only a hemisphere of
the ODF in each location needs to be sampled, i.e., only half of
POS needs to be stored. Accordingly, the values of the half ODF
are placed on a 2-D grid of following orientation:

(%@E{&%wﬂw—%}x{Qg“ww—%} @1

where n is the sampling step. In practice, the sampling step, n,
has been chosen empirically in order to provide a sufficiently
high resolution so that crossing fibers will be clearly separated
while keeping orientation space sufficiently small for computa-
tional purposes (here n = 18).

Thanks to the symmetry of the data, we work with only half
the data, but this involves that we need to avoid border artifacts
by exchanging the two ends of the level set along the #-axis after
every iteration.
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B. Reducing the Segmentation Space

Even though the problem of crossing fibers are solved with
our approach, a problem that is not avoided when segmenting
the fiber tracts is the well-known problem of kissing fibers.
Kissing fibers are when two fiber tracts at one point share both
position and orientation. If no external interference is added the
kissing tract will be segmented as one unit. This phenomenon
can complicate the separation of two tracts and to avoid this
problem a priori knowledge about the structures was used to
remove parts of the orientation-space corresponding to angles
that are not present in the structures to be segmented. This op-
eration does not only separate tracts but it also speeds up the
convergence and the processing times by reducing the space.

C. Solving the Level Set Equation

The level set equation is solved with a classical up-
wind-scheme, see, e.g., [20]. As it is usually done, the level
set function ¢ is implemented by the signed distance function
(SDF) of the evolving surface. Due to local dependence of the
propagation speed, the evolution of the other level sets differs
from the zero level set. This creates irregularities that deform
¢ so it ceases to be a signed distance function. A correct SDF
is crucial to get a correct and smooth evolution of the surface,
since the calculations of the normals and curvatures depend
directly on the SDF. Therefore, a reinitialization of the signed
distance map is made at every iteration. It is implemented using
the fast marching method to solve the following PDE [34]:

| Vo |=1. (22)

During the evolution process it is very important to preserve
a SDF to assure a correct computation of the normals and the
mean curvature. If we do not reinitialize the level set function
the propagation quickly becomes unstable. The step length of
the iteration also needs to be sufficiently small to maintain the
smoothness of the propagating surface. We have chosen a max-
imum step length of 10% of the voxel size. The iterations are
continued until the total movement of the propagating surface
is considered insignificant.

To speed up this process, all values above 4 of the SDF is set
to 4. The reinitialization process is then only performed until the
value 4 is reached.

D. Projection in the Position Space

The proposed segmentation method has been defined in the
5-D position orientation space. Hence, the solution lies in a 5-D
space, which obviously cannot be vizualized. Thus, the segmen-
tation result has to be projected in the 3-D position space by
carefully extracting the orientation information. The projection
back to the 3-D position space R? is very simple. The value of
the level set function in R?, called PR3, 18 the maximum of the
values of the level set function ¢ in the orientation space

¢R3($7y72") = Inaox¢(z7y7z,<p,9) (23)
@,

if the inside region .S;;, of the hypersurface S is defined by {w €

Q : ¢(w,t) > 0} and the outside region 2 \ Si, by {w €

2 $(w,t) < 0}. We point out that the operator max in (23)

is replaced by min if the inside region Sj, is represented by
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Fig. 4. A 2-D section of the 3-D space of the ODF volumes at different
scales. (a) No smoothing applied. (b) Smoothed with a TV-flow, ten iterations.
(c) Twenty iterations.

{w € Q: ¢(w,t) < 0} and the outside region Q2 \ Si, by
{w € Q: ¢(w,t) > 0}. Finally, the surface representing the
segmented structures is given by

SR3 = {(ZL’7y7Z) € RS : ¢R3($7y7z) = 0}

One way to understand (23) is to observe Fig. 1. If (z,y) is
located inside a fiber in the 2-D position space, Fig. 1(c), then
the maximum value along the #-axis, Fig. 1(d), will be positive.
Inversely, if (z,y) is outside a fiber then the maximum value
will be negative. The contour of the fiber naturally lies on the
boundary between positive and negative values.

(24)

IV. RESULTS

A. Synthetic Data

To test the method, we constructed a 3-D map of ODFs mod-
elling two crossing fiber tracts; see left figure in Fig. 4. The
ODFs are normalized by dividing with the maximum of each
ODF. In Fig. 4, we see the effect of the regularization through
the TV flow with 10 and 20 iterations.

To perform the segmentation the hyper-surfaces were initial-
ized by placing a small hyper-surface of a few 5-D voxels in
each fiber tract. The hyper surface was evolved until conver-
gence and then projected back into 3-D Euclidean space. The
result is shown in Fig. 2(c). We see how each fiber tract is seg-
mented completely without influence from the other crossing
fiber tract.

B. Real Data

1) Material: The diffusion images were obtained on a
healthy volunteer with a 3T MRI scanner. We used a diffusion
weighted single shot EPI sequence with timing parameters:
TR/TE/A/ § = 3000/154/47.6/35 ms, bpax = 12 000 mm? /s
and a spatial resolution of 2 x 2 x 3 mm?. The axial acquisition
matrix was 128 x 128 and the slice number equal to 32. The
data were acquired by sampling 515 brain volumes, each with a
different diffusion weighting corresponding to a different point
in g-space. The points in g-space are restricted to the interior
of a sphere where the maximal radius corresponds to byax.-
From this acquisition the ODF map is reconstructed according
a standard DSI scheme [35]. A visual inspection was made
in order to make a first quality estimation of the data. The
subject has been lying sufficiently still so that no major artifact
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Fig. 5. A 2-D section of the 3-D space of the ODF volumes at different scales.
(a) No smoothing applied. (b) Smoothed with a TV-flow, five iterations. (c) Ten
iterations.

Fig. 6. Projections back to 3-D of different thresholds applied in 5-D space
of different smoothing scales. (a) No smoothing applied, threshold £ = 0.82.
(b) No smoothing applied, ¢ = 0.75. (c) Image smoothed with TV flow, five
iterations, * = 0.60. (d) TV-flow five iterations, * = 0.55. (¢) TV-flow ten
iterations, t = 0.40. (f) TV-flow ten iterations, * = 0.35.

can be seen. Motion artifact due to cardiac and breathing are
random effects that get averaged out increasing noise to a yet
acceptable level. Informed consent was obtained in accordance
with institutional guidelines for the volunteer.

2) Results: The ODFs are normalized by dividing with the
maximum from each ODF and the 5-D POS is constructed with
a sampling step of n = 18 in orientation, (21), which corre-
sponds to an angular step of 10°. The TV flow is then applied.
In Fig. 5, the results can be seen after five and ten iterations, re-
spectively. The figure shows the reconstructed ODF map after
the regularization. The effect of the regularization can be easily
seen in Fig. 6, where different thresholds have been applied to
the level set function and the result of the thresholding has been
projected back to three dimensions. We see that as the regular-
ization gets more important the shape of the surfaces is simpli-
fied and the larger tract more distinctive as the smaller tracts are
erased.

In order to place the initial surfaces the thresholding was per-
formed on the regularized image. By only keeping data for cer-
tain angles the core shape of the corpus callosum, the cortico
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Fig. 7. Initial surfaces for the segmentation. Surfaces are obtained by thresh-
olding the regularized 5-D space. In the 5-D space, only angles represented by
red on the spheres are kept.

Fig. 8. Results from application on DSI from a human brain. Cortico spinal
tract is represented by the red surface, the green surface represents the corpus
callosum, and the magenta are the longitudinal fasciculus. (a) Coronal cut of
the 3-D projection of the result superposed on a coronal slice of the regularized
ODFs. (b) Coronal cut of the 3-D projection of the result superposed on a coronal
slice of the original ODFs. (c) The 3-D projection of the 5-D results in a 5-D
field regularized with ten iterations of the TV-flow. (d) The 3-D projection of
the 5-D results in the original unregularized 5-D field.

spinal tracts and a part of the fasciculus bundles could easily be
identified; see Fig. 7.

The initial surfaces were then evolved according to the
method presented. The segmentation was first done in the
lowest scale, that is the regularized image seen in Fig. 5(c),
to obtain the global structure of the object. This results in a
coarse segmentation as can be seen in Fig. 8(a) and (c). The
refinement was then done by using the coarser segmentation as
initialization and then evolving the surfaces with the previous
method in the original 5-D POS. The 3-D projections of the
results are shown in Fig. 8(b) and (d). They display the core of
important fiber tracts such as the corpus callosum (green), the
cortico spinal tract (red), and the arcuate fasciculus (magenta).

V. DISCUSSION AND CONCLUSION

With this study, we have first of all practically and theo-
retically shown that it is possible to implement the level set
method for evolving a hyper-surface in a high-dimensional
non-Euclidean space. In particular, we have seen that the
mean-curvature flow can be elegantly implemented by the use
of the theory developed by Ambrosio and Soner [28] and that
the segmentation process can be made more efficient with a
multiscale approach. Second, we have seen that it is natural to
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represent diffusion of a complex medium with a 5-D space and
that it has the additional advantage to have a mathematically
clear representation. Furthermore, the dimensionality extension
from 3-D to 5-D has the great advantage of disentangling
signals coming from crossing structures. Results on synthetic
data show that crossing fiber tracts in 3-D are represented in
5-D POS as separate objects characterized by intense diffusion.
The results shown for brain DSI data clearly demonstrate
the potential of this approach to clearly delimit fiber tracts,
precisely structures of intense coherent diffusion. Such objects
may then easily be characterized in terms of shape, volume,
and internal signal characteristics, which is not so simple in
standard tractography. From a signal processing point of view,
the most attractive aspect of modelling diffusion as a scalar
field on a high-dimensional manifold is that standard image
processing procedures, such the ones used in 2-D and 3-D
image processing, can be directly extended and adapted to
explore dMRI data.

However, we must acknowledge that the presented procedure
has also drawbacks as compared to standard tractography
methods. Segmentation methods as presented here identify
regions but are not able to measure connectivity between gray
matter regions as done with tractography. The procedure is
based on an augmentation of the dimensionality of the pro-
cessing space. This generates a well known drawback, namely
the “curse of dimensionality” [36] which refers to the expo-
nential extension of the space as the number of dimensions
increase, making the computations heavier. Thus, this new rep-
resentation is a tradeoff between the additional computational
weight and the greater conceptual simplicity. But we must
keep in mind that the problem of data handling will be solved
with the ever increasing computer power and a more efficient
implementation and data storage.

It is not only interesting to compare the presented procedure
with standard tractography as just discussed, but also to un-
derstand the differences and similarities between the presented
level set method which is based on continuous mathematics with
the Markovian approach which is discrete and developed in the
context of dMRI in [16]. Both techniques are very well studied
methods with solid backgrounds but differ significantly in their
approaches [19], [20], [37]. The first technique considers the
segmentation space to be a (continuous) manifold while for the
second it is a (discrete) graph. The signal on the space is also
considered to be of a different nature, once it is a continuous
deterministic function and once it is a realization of a stochastic
process, i.e., a random field. Both techniques have regulariza-
tion constraints, once it is formulated in terms of curvature and
once in terms of Gibbsian enery. Finally, the segmentation re-
sult is provided by the level set itself for the first approach and
by the hidden Markov random field for the second. We see that
both approaches differ by their theoretical foundations but per-
form the same tasks, namely regularization and segmentation. It
is worth noticing that unifying theory of these two approaches
is discussed in the scientific community [38], but is out of the
scope of this paper, so is a quantitative comparison between their
performances.

As already mentioned, our approach treats one fiber tract as
one single object characterized by intense and coherent diffu-
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sion. This representation gives a different view of the brain ar-
chitecture that can be more appropriate for applications such
as quantitative investigation of the diffusion as well as for sur-
gical planning and white matter registration. Quantitative mea-
surements, like fractional anisotropy and mean diffusion, may
be indicated in specific tracts for diseases like Wallerian degen-
eration [39], multiple sclerosis [40], schizophrenia [41], or for
brain maturation studies [42].
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