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Abstract— Designing effective behavioral controllers for mo-
bile robots can be difficult and tedious; this process can be
circumvented by using unsupervised learning techniques whbh
allow robots to evolve their own controllers in an automated
fashion. In multi-robot systems, robots learning in parallel can
share information to dramatically increase the evolutionay
rate. However, manufacturing variations in robotic sensos
may result in perceptual differences between robots, which
could impact the learning process. In this paper, we explore
how varying sensor offsets and scaling factors affects palial
swarm-robotic learning of obstacle avoidance behavior usig
both Genetic Algorithms and Particle Swarm Optimization.
We also observe the diversity of robotic controllers throudnout
the learning process in an attempt to better understand the
evolutionary process.

I. INTRODUCTION

Designing even simple behaviors for robots that are effl
cient and robust can be very difficult for humans; it is ofterd
not hard to implement a rudimentary controller that accom;
plishes the task, but achieving near-optimal performaiace c
be very challenging, especially for miniature robotic plat
forms with severe hardware and computational limitations,

g

Unsupervised robotic learning allows for automated desi
of efficient, robust controllers, which saves much desigreti
and effort. Unsupervised learning is also useful for altayvi
robots to adapt to situations where the task/environment
unknown beforehand or is constantly changing.

Genetic Algorithms (GAs) are a very common method o
accomplishing machine learning and optimization. Candida
solutions to a problem are modeled as members of a pop
lation, and breeding (selection and crossover) and mlmtatig

are applied to “parents” (high performing solutions) in th
population to generate “children” (new candidate solut)on

GA can be used to shape an Artificial Neural Network (ANN)C
controller by using the parameter set as the weights, and t
evaluative function as a measure of the performance of

desired robot behavior.
Particle Swarm Optimization (PSO) is a promising ne

optimization technique which models a set of potentia?

problem solutions as a swarm of particles moving abo
in a virtual search space. The method was inspired
the movement of flocking birds and their interactions wit

their neighbors in the group. PSO achieves optimizatio?l

using three primary principles: evaluation, where quatitié
fithess can be determined for some particle location; co

parison, where the best performer out of multiple particleg
can be selected; and imitation, where the qualities of bettd
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particles are mimicked by others. The algorithm can also be
used to evolve ANN robotic controllers.

In robotic learning, in order to evaluate a candidate con-
troller solution, a robot must run the controller for some
period of time (typically from several seconds to several
minutes) and observe how well it performs over that duration
The computational and temporal resources needed for this
evaluation are drastically higher than those needed for the
processing of the learning algorithm itself in almost ales.
Therefore, robotic learning can be considered to be a very
expensive optimization problem, and speed-up efforts Ishou
be focused on decreasing the number/length of evaluations
rather than the internal workings of the learning technique

Both GA and PSO use groups of interacting virtual agents
n order to achieve their optimization. In collective roiost
roups of robots interact to accomplish their goals. It is
therefore possible to implement these algorithms in a [gral
distributed fashion for learning in multi-robot systemsch
robot is responsible for several virtual agents, which it
valuates at each iteration. After each set of evaluations,
e robots communicate to share the fitness information
needed to progress to the next iteration of the algorithm. By
running the algorithms in this fashion, we need no external
%Jpervisor to oversee the learning process, and the speed of
learning is significantly improved, as many robots evahgti
iln parallel increase the rate of candidate solution evadnat
and therefore decrease the total learning time.

On real robots, sensors and actuators may have slightly
ifferent performances due to variations in manufacturing

s a result, multiple robots of the same model may actually
perceive and interact with their environment differently,
reating a heterogeneous swarm. While robotic controller
ﬁgaluations are inherently stochastic due to partial, ynois
e&wironmental perception by individual robots, this heter
geneity may add a systematic bias between agents. This

\Ai/s a crucial difference; partial perception and noise can be

vercome by information exchange between robots, while
aring information between robots with different systéma
jases may actually hinder the learning process, sincedias
esults from other robots could cause a robot to incorrectly
dapt its behavior. The result may be increased difficulty in
evolving effective behavioral controllers. In order to nebd

pswarm heterogeneity, simulations of swarm-robotic leagni

an include fixed random variations in, for example, the
ensitivity and offsets of on-board sensors. This shodldat

a more realistic learning scenario.

In this paper, we explore the efficacy of parallel robotic

Néarning using GA or PSO on swarms of heterogeneous

robots with sensor variations. We observe the diversity of
the GA and PSO populations in different instances to attempt



to gain insight into the evolutionary process. Section B-pr a “ring topology”) regardless of the particles’ positionghe

vides some background on GA, PSO, unsupervised robosearch space. The equations executed by PSO at each step
learning, and multi-robot learning. Section Ill detailsrou of the algorithm are

robotic learning case study and gives results in the case of a .

homogenous robot swarm. Section IV explores the impact of Vi = W' Vij Tpw: rand() - (27 ; =~ i)

sensor offsets on the learning process, while section Vesud + nw - rand() - (z3 ; — i)

the impact of different sensor scaling factors. In sectidn V T Tij+ v

we analyze the diversity of the GA and PSO populations _ L . . .
throughout the learning process in order to determine th¥nere w is the inertia coefficient which slows velocity

cause of difference between the algorithms with and witho@Ver time, pw is the weight given to the attraction to the
sensor variations. In section VII, we discuss the implmagi Previous best location of the current particle and is the

of our results, and section VIII concludes and provide@’eight given to the attraction to the previous best locatibn
outlook on future work. the particle neighborhooaand() is a uniformly-distributed

random number ifo0, 1].
Il. BACKGROUND PSO has been shown to perform as well as or better than

Genetic algorithms were originally developed in the 19606A in several instances. Eberhart and Kennedy found PSO
by John Holland. The algorithms are inspired by evolutiorperforms on par with GA on the Schaffer f6 function [4],
where the fittest members of a population tend to reprodu¢@]. In work by Kennedy and Spears [10], a version of PSO
more often than the less fit members. Candidate solutions aretperforms GA in a factorial time-series experiment. k@ur
modeled as a population of “chromosomes”. At each iteratioshowed that PSO appears to outperform GA in optimizing
of the algorithm, a new population is generated from theeveral standard size and shape design problems [6].
previous one. Selection of the parents of the new generationUnsupervised learning describes learning scenarios where
is implemented using one or more of several schemethere is no external entity which decides upon the traingtg s
such as elitism (using only the top performing memberimputs for the learning agent(s). Rather, inputs are gée@ra
of the population), Roulette Wheel sampling (stochadtical dynamically as the agents interact with their environment.
choosing parents with weight proportional to performanceYhis is as opposed to supervised learning, where the inputs
and rank selection (ranking chromosomes from best to worgte generated/collected first and then used repeatedly. In
and stochastically choosing parents with weight propoaio supervised learning, the accuracy of the system at each
to their rank). After parents have been chosen, crossovigeration is usually decided by an external “teacher” eval-
between the parents can occur with some probability (eactating the system output. The pre-defined inputs are split
chromosome is split into multiple pieces, and children usito two separate sets, one for training the system and the
some parts from one parent and some parts from the othesjher for testing the performance. Supervised learninggen
This allows positive aspects from different chromosome® be easier than unsupervised, as the data does not change
to be merged into a single chromosome. Last, mutation etween iterations of the algorithm and can be preselected
applied, where each element of the chromosome may havetits avoid using unusual or particularly noisy data points.
value randomly changed with some probability. This progideHowever, supervised learning is not possible in situations
a random local search, which allows solutions to continue towhere the input data to the system depends on the current
improve beyond the genetic diversity that was available iatate of the learning agent; this is the case for online iiobot
the original population ([7], [16]). learning, since the robot’s movements affect what its ssnso

The original PSO method was developed by Jamesill perceive.
Kennedy and Russel Eberhart [4], [9]. Every particle in Evolutionary algorithms have been used extensively for
the population begins with a randomized positiory f) unsupervised learning of robotic behavior. A good survey of
and randomized velocityuf ;) in the n-dimensional search the work is given in [13] and more recently in [20]. More
space, where represents the particle index apdepresents specifically, standard GA has been shown to be effective in
the dimension in the search space. Candidate solutions @&lving simple robotic controllers [5], and modified noise
optimized by flying the particles through the virtual spaceresistant versions of both GA and PSO were shown to
with attraction to positions in the space that yielded thst beachieve very good performance on simulated unsupervised
results. Each particle remembers the position at which ibbotic learning, outperforming the standard versionshef t
achieved its highest performance (). Each particle is also algorithms [21].
a member of some neighborhood of particles, and rememberdViulti-robot learning has been used and explored in var-
which particle achieved the best overall position in thaibus ways; a survey of work (including learning on other
neighborhood (given by the inde%. This neighborhood can multi-agent systems) can be found in [24]. Matari¢ studied
either be a subset of the particles (local neighborhoodllor mechanisms to encourage individual agents in a group to
the particles (global neighborhood). For local neighbodsy act in ways to help the group performance [12]. Multi-
the standard method is to set neighbors in a pre-defined wegbot learning using several methods in a wide variety of
(such as using particles with the closest array indices teoduscenarios has been explored [2], [23]. Specialization ittimu
the size of the population as neighbors, henceforth known agent systems using reinforcement learning was studied in



TABLE |

18]. Techni [ ing indivi i ;
[ 8] echniques for Increasing individual leammg SpHE‘d GA AND PSO ARAMETERS FORUNSUPERVISEDL EARNING

multi-robot learning were studied in [8] and [14]. A modified
version of a genetic algorithm has been embedded onto a 2-

robot system to allow for distributed parallel learning J[19 GA PSO

Pugh and Martinoli found that both GA and PSO could be | Population Size 20 Population Size| 20

used for effective distributed parallel multi-robot e in Mutation Probability | 0.15 pw 2.0

[22]' Crossover Probability] 0.2 nw 2.0
To the best of our knowledge, no research has yet been Mutation Range [200. 200] | w 0.6

conducted on multi-robot learning in a heterogeneous swarm
with sensor/actuator variations. Heterogeneity only iotpa
the learning process in multi-robot systems, as a controlle
evolved in a single robot scenario will presumably onlyas well as a recursive connection from the previous output
be used on the same robot. Differences between robatbthe neuron, lateral inhibitions and bias values (see Big.
could potentially be useful in some situations; they mighgiving us 22 weights total. Sensors have a maximum range of
encourage specialization within the swarm, as mentioned 10 cm, and sensor output varies linearly from 0 at maximum
[11]. However, in our current case study where the robotinge to 1 at minimum range (0.0 cm) with 3% noise. Slip
swarm evolves a single controller, heterogeneity is likely noise of 10% is applied to the wheel speed. The time step
make the learning process more difficult. for neural updates is 128 ms. We use the fitness function
used originally in [5] and again in [22]. The fitness function

1. PARALLEL SWARM-ROBOTIC LEARNING CASE is given by:

STuDY: OBSTACLE AVOIDANCE

Expanding upon the work presented in [22], we use the F=V-1-vAv)-(1-1i)
case study of obstacle avoidance for our swarm-robotic 0<vV<il
learning task. 0<Av<1

A. Experimental Setup 0<i<l1

For the learning techniques, we use the noise-resistant G#hereV is the average absolute wheel speed of both wheels,
and PSO algorithms from [22]. GA uses elitism to selecf\v is the average of the difference between the wheel speeds,
the best half of the population as the parent set, and thand ¢ is the average activation value of the most active
applies Roulette Wheel sampling to replenish the missingroximity sensor over the evaluation period. These factors
chromosomes. PSO uses a local neighborhood in a riigward robots that move quickly, turn as little as possithe]|
topology with one neighbor on each side. At every iteratiorgpend little time near obstacles, respectively. The terras a
these algorithms reevaluate their previous best locatmals normalized to give a maximum fitness of 1. The evaluation
parent sets for PSO and GA, respectively, combining thgeriod of the fitness tests for these experiments is 240,steps
new fitness value with previous ones to get a more accurate approximately 30 seconds. Between each fitness test, the
measure of the actual fitness. Although this requires twiggosition and bearing of the robots are randomly set by the
as many fitness evaluations at each iteration as their sethndaimulator to ensure the randomness of the next evaluation.
counterparts, this technique prevents noisy fitness etrahs During evolution, each of the 20 robots is responsible for
from severely disrupting the learning process and gives single member of the GA/PSO population (i.e. they must
much better results given the same number of evaluatiorwaluate that member at each iteration and communicate the
of candidate solutions. resulting fithess measure). With 100 iterations of the liegrn

For both PSO and GA, initial population member elementsglgorithms, this results in a total simulated learning tiofe
are randomly generated in the range20, 20] but allowed approximately 1 hour 40 minutes (100 iterations comprised
to change to any value during evolution. Velocity in PSO i®f 2 evaluations each lasting 30 seconds).
also randomly initialized in the range-20, 20] but prevented |
from ever going outside this range. B. Results

The parameters for the algorithms are given in Table I. The average performance over 100 runs of the best evolved

We use Webots, a realistic simulator, for our robotic simeontrollers in the population can be seen in Fig. 3. As pre-
ulations [15], using 20 e-puékobots [3] (this is as opposed viously found_, PSO is able to achieve superior performance,
to the Khepera robot [17] used in previous experiments§S GA oqcasmnally produce; poorer solut.ions. The progress
The robot(s) operate in a 2.0 m x 2.0 m square arena wiff evolution can be seen in Fig. 4. While GA improves
no additional obstacles (see Fig. 1). The robotic contradle faster in the first few iterations, it quickly changes to a
a single-layer discrete-time artificial neural network wbt 9radually increasing plateau, while PSO continues imprgvi
neurons, one for each wheel speed, with sigmoidal outplftroughout the entire process.

functions. The inputs are the eight infrared proximity sess W0 primary types of obstacle avoidance controllers were
observed in successful evolutionary runs of both GA and

Lhttp://Awww.e-puck.org PSO. In the absence of obstacles, both types caused the
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Fig. 1. Robot arena with e-puck robots.

Fig. 2.  Depiction of the artificial neural network used forethobot
controller. Curved arrows are recurrent connections atetdhinhibitions.

robot to move ahead at full speed. The first controller
consistently made the robot perform either a right turn or
left turn at the activation of any of its front sensors, tlgre
avoiding the obstacle in its path. The second controllel
used the recurrent neural connection to achieve a multi gl
state behavior; the robot would run forward until the front
sensors detected an obstacle, at which point it would revers  0.5¢
its wheel speed and run backwards at full speed. When th 3
rear sensors were activated, the robot would again resun £ %4/
forward movement, resulting in a back-and-forth behavior
which somewhat resembles bouncing. Depending upon th
environment, either of these two types of behavior might be .2}
preferable to the other.

0.8

0.1
IV. HETEROGENEITY FROMSENSOROFFSETS

One potential variation between sensors is different bffse 0
values (i.e. if some sensor A detects valtesome other
sensor B would detect + a, wherea is the offset value). Fig. 3. Fitness of best evolved controllers in populatioteraévolution
We can incorporate this variation in our simulation usingveraged over 100 runs for GA and PSO. Error bars represantast
sensor values of: error.

GA PSO

vl =v; + a;
. . L B. Results
wherew; is the original sensor valuey is the offset sensor

value used by the robot controller, angis a Gaussian offset 1 h€ average performance over 100 runs of the best evolved
value randomly generated at the start of the simulation withPntrollers in the population for different levels of senso

mean of 0 and standard deviation ©f offset variation can be seen in Fig. 5. While the perfor-
] mance is not highly impacted for a standard deviation of
A. Experimental Setup up to 0.1, a significant decrease can be seen at 0.2, and

We repeat the experiments from section Ill using senser standard deviation of 0.5 yields quite poor performance.
offsets with standard deviation of 0, 0.05, 0.1, 0.2, andhis suggests that neither GA nor PSO are affected by minor
0.5 (corresponding to 0%, 5%, 10%, 20%, and 50% of theariations, but major variations could cause some sensors t
maximum sensor value, respectively). In order to accuratebe always/never perceived as active, which would cause very
evaluate the performance of the controller, the originakse poor performance. The same trend can be seen in both GA
values are used for the proximity term of the fitness calcuand PSO, though it appears as though GA performs relatively
lation. The same parameters are used for both GA and PSa&tter with large offsets.
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Fig. 4. Average fitness of population members throughoutiution : : o
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Fig. 7.  Average fitness of population members throughoutiuten

Fig. 5. Fitness of best evolved controllers in populatioteraévolution : . .
averaged over 100 runs for GA and PSO with different standaxdations ;/ﬁrs%%egﬁ:(\e/te r 100 runs for PSO with different standard deui (s) of

(s) of sensor offset. Error bars represent standard error.

ing factor randomly generated at the start of the simulation

The performance of GA throughout learning with differen tjth mean of 1 and standard deviation «of

offset levels can be seen in Fig. 6. We notice that the trend o
rapid initial improvement followed by a gradually increagi A, Experimental Setup
plateau is not affected, but rather performance seems to beW

scaled down as the standard deviation of the offset grows. A e repeat the experiments from section 11l using sensor

similar trend can be observed for the PSO results in Fig. scaling factors with standard deviation of 0, 0.05, 0.1, 0.2
and 0.5 (and mean of 1). In order to accurately evaluate the

performance of the controller, the original sensor values a

o ) used for the proximity term of the fithess calculation. The
Another variation that can occur between sensors is sefsme parameters are used for both GA and PSO.

sitivity. One sensor may be more sensitive to input, which
causes its output to vary more quickly than others. We cdB Results

model this in our simulation using the equation: The average performance over 100 runs of the best evolved
controllers in the population for different levels of senso
scaling variation can be seen in Fig. 8. The performance
wherev; is the original sensor value; is the offset sensor here is impacted less than for the case of sensor offsetd; goo
value used by the robot controller, and is a Gaussian scal- performance is maintained even for a scaling factor stahdar

V. HETEROGENEITY FROMSENSORSCALING

!
V; = v,
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Fig. 8. Fitness of best evolved controllers in populatioteraévolution  averaged over 100 runs for PSO with different standard tewi (s) of
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VI. DIVERSITY IN EVOLVING ROBOT SWARMS

0.5¢ o _h,v‘wm,w Although PSO was able to achieve superior performance
i ST to GA in evolving robotic controllers in [21] and [22], the
o4l /ﬂ"w”J i reasons for this were never apparent. A major drawback to
g using stochastic multi-agent algorithms such as GA and PSO
/ is that they lack transparency about what exactly is hapgeni
2 0-3’{’ ] during the evolutionary process and why they achieve the
3 results that they do. In an attempt to shed some light on
0.2k — 5=00 | this issue, we analyze the diversity of the GA and PSO
T populations through their evolution.
0.1 Y ] A. Experimental Setup
Many different metrics can be used to measure the di-
0 : : ‘ : versity of a set of numerical vectors. For our study, we
0 20 40 60 80 100

choose one of the most simple and most common: Euclidean
distance. The pairwise diversity between two members of a

Fig. 9. Average fitness of population members throughoutugon  POpuUlation is therefore given by:
averaged over 100 runs for GA with different standard deat (s) of
sensor scaling factors.

’ d(a,b) = [3 " (ai = b;)?

%

Iterations

o whered(a, b) is the pairwise diversity between memilasaind
deviation of 0.5, though we do see an observable decregs@mbpers, andz; is element i of membes. The diversity
here. The cause of this may be that, although the sensitivigf the entire population is given by the average pairwise

close proximity, lower for far proximity), and thereforeeth

performance of the controller is not significantly impacted 1
We again see the same trend in both GA and PSO, and GA D= NN=T) > d(a,b)
again performs relatively better with large scaling vaoias. a | b#a

The performance of GA throughout learning with differentvherea andb are members of the population, andis the
scaling levels can be seen in Fig. 9. As a result of the bettital size of the population.
performance, there is not such an obvious decrease as th&Ve measure diversity throughout evolution for parallel
standard deviation of the scaling grows, as we see the satearning using GA and PSO for homogenous robotic swarms
trend in all cases. Differences between curves is morelgisiband for heterogeneous robotic swarms with sensor offsets.
for PSO, where the performance decreased more for high&ke keep the same scenario and parameters as used previ-
scaling variation (see Fig. 10). ously.
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Fig. 11. Diversity of population members throughout eviolutaveraged Fig. 12. Diversity of population members throughout eviolutaveraged

over 100 runs for GA and PSO for a homogenous robot swarm. over 100 runs for GA with different standard deviatior} ¢f sensor offset.
140
B. Results
. . . . 130r N el B2 T AR e
The progress of population diversity throughout evolution N A UL

for GA and PSO on a homogenous swarm can be seenin Fit 159l
11. The diversity in GA drops quickly in the initial iteratie
and maintains a stable lower value for the rest of the
evolution. In contrast, the diversity of PSO actuatgreases
initially and maintains a higher value. This is evidence for & 100f

110r

ty

Iversi

the hypothesis given in [22] that by very quickly converging | .- 228:85

to a good candidate solution, GA sacrifices the ability to 90| © s=01 1
further explore for better possible solutions, which catise j 228;5

to occasionally converge to a mediocre final solution. On 807 1
the other hand, by maintaining high diversity throughout

evolution, PSO is able to continuously discover new anc % 20 20 60 80 100
better solutions and continue improving throughout théent Iterations

evolution. This also demonstrates why PSO is better able to o ' _

maintain good performance with a smaller population siz 15, Puraty o pobuion Rerbers gl Siaveres

while GA does very poorly with small populations since it

requires enough genetic diversity to already include a good

solution. VI
We can also compare the progression of diversity for evo-

lution of heterogeneous robotic swarms with sensor offsets For parallel swarm-robotic learning of obstacle avoidance

using GA (see Fig. 12) and PSO (see Fig. 13). In the casehavior, offset variation seemed to have a much higher

of GA, we see that the more offset variation there is, thenpact on performance than scaling variation. However, it

higher the final diversity value. This is likely the result ofis highly likely that this result is specific to our case study

less convergence in the GA population, as candidate sokitioAs mentioned previously, because of the linear manner in

which work well on one robot may not do so on anothenvhich proximity sensors are used (i.e. higher - there is an

which would help maintain genetic variation somewhat. Foobstacle, lower - there is no obstacle), scaling does na hav

PSO, there is no significant change in diversity for low sensanuch effect, while offset variation could potentially casé

offset variations; for higher variations, the diversityogis the sensor as to its current state. One can envision other

more slowly initially and more quickly at the end of thescenarios where this is not the case: if a sensor has some

evolution. This may be caused by less useful informatioimtermediate optimum value, both offset and scaling would

sharing between robots due to major sensorial differencefisrupt its reading; comparing subsequent sensor readings

promoting individual reliance. This prevents the initiaprd would remove any offset bias but still be affected by scaling

diversity increase observed in the communicating swarherefore, parallel learning in heterogeneous robotiaswa

but also prevents any convergence which would limit theeeds to be tested on many other case studies before any such

diversity in the latter evolutionary stages. generalizations can be made.

. DIScuUSSION



Although not shown here, we also performed severals]
parallel swarm-robotic learning tests using PSO withoyt an
velocity limit (w was kept ab.6). While the performance of [6]
the resulting controllers was not significantly differetite
diversity of the population exploded, growing exponeiial 1
until the end of the evolution (it was not uncommon to
have a final diversity on the order of 100,000). The plateaus]
previously observed is therefore only caused by a hard
velocity bound. We believe the reason for this explosiveyg,
behavior is the same as the reason for the low impact of
variations in sensor scaling; ANNs continue to function
nearly the same if every weight is multiplied by a constar{tlo]
factor. The only change will be the sensitivity of the sigthoi
output function, which will approach a step function as the
neural weights increase. [11]

VIIl. CONCLUSION AND OUTLOOK

We have explored some of the effects of robot heterogen@?!
ity on parallel swarm-robotic learning. In the case of eirudv
obstacle avoidance, both Genetic Algorithms and Partic[é3]
Swarm Optimization were able to withstand small variations
in sensor offsets and large variations in sensor scalingfac |14
while showing poor performance with high offset variations
By observing population diversity throughout evolutiore w
discovered that PSO maintains much higher diversity, whigfs)
could explain its superior ability to GA in avoiding local
optima. (16]

Though not explored here, there could be ways in whicj7)
heterogeneous robotic swarms could identify differences
between robots by comparing the performance of shared
controllers. This information could be used to avoid theg)
fithess degradation previously observed and might even be
useful for deliberately pursuing specialization withineth [19]
swarm if not limited to evolving one single controller.

We have shown that tracking population diversity can yield
some insight into the progress of the evolving swarm. On[go]
could therefore imagine that these learning algorithmdctou
be improved if they were to track their own diversity. A
simple example would be allowing GA to scale the valueE!l
of some of its population members if the diversity were too
low. While calculating the diversity of the entire poputati [22]
requires a global manager, it might be feasible for indiaidu
robots to acquire a good estimation using local sensing of
nearby teammates, which could allow this change to Ha3]

implemented in a distributed fashion. [24]
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