
Parallel Learning in Heterogeneous Multi-Robot Swarms

Jim Pugh,Member, IEEE and Alcherio Martinoli,Member, IEEE

Abstract— Designing effective behavioral controllers for mo-
bile robots can be difficult and tedious; this process can be
circumvented by using unsupervised learning techniques which
allow robots to evolve their own controllers in an automated
fashion. In multi-robot systems, robots learning in parallel can
share information to dramatically increase the evolutionary
rate. However, manufacturing variations in robotic sensors
may result in perceptual differences between robots, which
could impact the learning process. In this paper, we explore
how varying sensor offsets and scaling factors affects parallel
swarm-robotic learning of obstacle avoidance behavior using
both Genetic Algorithms and Particle Swarm Optimization.
We also observe the diversity of robotic controllers throughout
the learning process in an attempt to better understand the
evolutionary process.

I. I NTRODUCTION

Designing even simple behaviors for robots that are effi-
cient and robust can be very difficult for humans; it is often
not hard to implement a rudimentary controller that accom-
plishes the task, but achieving near-optimal performance can
be very challenging, especially for miniature robotic plat-
forms with severe hardware and computational limitations.
Unsupervised robotic learning allows for automated design
of efficient, robust controllers, which saves much design time
and effort. Unsupervised learning is also useful for allowing
robots to adapt to situations where the task/environment is
unknown beforehand or is constantly changing.

Genetic Algorithms (GAs) are a very common method of
accomplishing machine learning and optimization. Candidate
solutions to a problem are modeled as members of a popu-
lation, and breeding (selection and crossover) and mutation
are applied to “parents” (high performing solutions) in the
population to generate “children” (new candidate solutions).
GA can be used to shape an Artificial Neural Network (ANN)
controller by using the parameter set as the weights, and the
evaluative function as a measure of the performance of a
desired robot behavior.

Particle Swarm Optimization (PSO) is a promising new
optimization technique which models a set of potential
problem solutions as a swarm of particles moving about
in a virtual search space. The method was inspired by
the movement of flocking birds and their interactions with
their neighbors in the group. PSO achieves optimization
using three primary principles: evaluation, where quantitative
fitness can be determined for some particle location; com-
parison, where the best performer out of multiple particles
can be selected; and imitation, where the qualities of better

Jim Pugh and Alcherio Martinoli are with the Swarm-Intelligent Sys-
tems Group,École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland{jim.pugh,alcherio.martinoli}@epfl.ch.

Both authors are currently sponsored by a Swiss NSF grant (contract Nr.
PP002-68647).

particles are mimicked by others. The algorithm can also be
used to evolve ANN robotic controllers.

In robotic learning, in order to evaluate a candidate con-
troller solution, a robot must run the controller for some
period of time (typically from several seconds to several
minutes) and observe how well it performs over that duration.
The computational and temporal resources needed for this
evaluation are drastically higher than those needed for the
processing of the learning algorithm itself in almost all cases.
Therefore, robotic learning can be considered to be a very
expensive optimization problem, and speed-up efforts should
be focused on decreasing the number/length of evaluations
rather than the internal workings of the learning technique.

Both GA and PSO use groups of interacting virtual agents
in order to achieve their optimization. In collective robotics,
groups of robots interact to accomplish their goals. It is
therefore possible to implement these algorithms in a parallel
distributed fashion for learning in multi-robot systems. Each
robot is responsible for several virtual agents, which it
evaluates at each iteration. After each set of evaluations,
the robots communicate to share the fitness information
needed to progress to the next iteration of the algorithm. By
running the algorithms in this fashion, we need no external
supervisor to oversee the learning process, and the speed of
learning is significantly improved, as many robots evaluating
in parallel increase the rate of candidate solution evaluation
and therefore decrease the total learning time.

On real robots, sensors and actuators may have slightly
different performances due to variations in manufacturing.
As a result, multiple robots of the same model may actually
perceive and interact with their environment differently,
creating a heterogeneous swarm. While robotic controller
evaluations are inherently stochastic due to partial, noisy
environmental perception by individual robots, this hetero-
geneity may add a systematic bias between agents. This
is a crucial difference; partial perception and noise can be
overcome by information exchange between robots, while
sharing information between robots with different systematic
biases may actually hinder the learning process, since biased
results from other robots could cause a robot to incorrectly
adapt its behavior. The result may be increased difficulty in
evolving effective behavioral controllers. In order to model
swarm heterogeneity, simulations of swarm-robotic learning
can include fixed random variations in, for example, the
sensitivity and offsets of on-board sensors. This should reflect
a more realistic learning scenario.

In this paper, we explore the efficacy of parallel robotic
learning using GA or PSO on swarms of heterogeneous
robots with sensor variations. We observe the diversity of
the GA and PSO populations in different instances to attempt



to gain insight into the evolutionary process. Section II pro-
vides some background on GA, PSO, unsupervised robotic
learning, and multi-robot learning. Section III details our
robotic learning case study and gives results in the case of a
homogenous robot swarm. Section IV explores the impact of
sensor offsets on the learning process, while section V studies
the impact of different sensor scaling factors. In section VI,
we analyze the diversity of the GA and PSO populations
throughout the learning process in order to determine the
cause of difference between the algorithms with and without
sensor variations. In section VII, we discuss the implications
of our results, and section VIII concludes and provides
outlook on future work.

II. BACKGROUND

Genetic algorithms were originally developed in the 1960s
by John Holland. The algorithms are inspired by evolution,
where the fittest members of a population tend to reproduce
more often than the less fit members. Candidate solutions are
modeled as a population of “chromosomes”. At each iteration
of the algorithm, a new population is generated from the
previous one. Selection of the parents of the new generation
is implemented using one or more of several schemes,
such as elitism (using only the top performing members
of the population), Roulette Wheel sampling (stochastically
choosing parents with weight proportional to performance),
and rank selection (ranking chromosomes from best to worst
and stochastically choosing parents with weight proportional
to their rank). After parents have been chosen, crossover
between the parents can occur with some probability (each
chromosome is split into multiple pieces, and children use
some parts from one parent and some parts from the other).
This allows positive aspects from different chromosomes
to be merged into a single chromosome. Last, mutation is
applied, where each element of the chromosome may have its
value randomly changed with some probability. This provides
a random local search, which allows solutions to continue to
improve beyond the genetic diversity that was available in
the original population ([7], [16]).

The original PSO method was developed by James
Kennedy and Russel Eberhart [4], [9]. Every particle in
the population begins with a randomized position (xi,j)
and randomized velocity (vi,j) in the n-dimensional search
space, wherei represents the particle index andj represents
the dimension in the search space. Candidate solutions are
optimized by flying the particles through the virtual space,
with attraction to positions in the space that yielded the best
results. Each particle remembers the position at which it
achieved its highest performance (x∗

i,j). Each particle is also
a member of some neighborhood of particles, and remembers
which particle achieved the best overall position in that
neighborhood (given by the indexi′). This neighborhood can
either be a subset of the particles (local neighborhood), orall
the particles (global neighborhood). For local neighborhoods,
the standard method is to set neighbors in a pre-defined way
(such as using particles with the closest array indices modulo
the size of the population as neighbors, henceforth known as

a “ring topology”) regardless of the particles’ positions in the
search space. The equations executed by PSO at each step
of the algorithm are

vi,j = w · vi,j + pw · rand() · (x∗
i,j − xi,j)

+ nw · rand() · (x∗
i′,j − xi,j)

xi,j = xi,j + vi,j

where w is the inertia coefficient which slows velocity
over time,pw is the weight given to the attraction to the
previous best location of the current particle andnw is the
weight given to the attraction to the previous best locationof
the particle neighborhood.rand() is a uniformly-distributed
random number in[0, 1].

PSO has been shown to perform as well as or better than
GA in several instances. Eberhart and Kennedy found PSO
performs on par with GA on the Schaffer f6 function [4],
[9]. In work by Kennedy and Spears [10], a version of PSO
outperforms GA in a factorial time-series experiment. Fourie
showed that PSO appears to outperform GA in optimizing
several standard size and shape design problems [6].

Unsupervised learning describes learning scenarios where
there is no external entity which decides upon the training set
inputs for the learning agent(s). Rather, inputs are generated
dynamically as the agents interact with their environment.
This is as opposed to supervised learning, where the inputs
are generated/collected first and then used repeatedly. In
supervised learning, the accuracy of the system at each
iteration is usually decided by an external “teacher” eval-
uating the system output. The pre-defined inputs are split
into two separate sets, one for training the system and the
other for testing the performance. Supervised learning tends
to be easier than unsupervised, as the data does not change
between iterations of the algorithm and can be preselected
to avoid using unusual or particularly noisy data points.
However, supervised learning is not possible in situations
where the input data to the system depends on the current
state of the learning agent; this is the case for online robotic
learning, since the robot’s movements affect what its sensors
will perceive.

Evolutionary algorithms have been used extensively for
unsupervised learning of robotic behavior. A good survey of
the work is given in [13] and more recently in [20]. More
specifically, standard GA has been shown to be effective in
evolving simple robotic controllers [5], and modified noise-
resistant versions of both GA and PSO were shown to
achieve very good performance on simulated unsupervised
robotic learning, outperforming the standard versions of the
algorithms [21].

Multi-robot learning has been used and explored in var-
ious ways; a survey of work (including learning on other
multi-agent systems) can be found in [24]. Matarić studied
mechanisms to encourage individual agents in a group to
act in ways to help the group performance [12]. Multi-
robot learning using several methods in a wide variety of
scenarios has been explored [2], [23]. Specialization in multi-
agent systems using reinforcement learning was studied in



[18]. Techniques for increasing individual learning speedvia
multi-robot learning were studied in [8] and [14]. A modified
version of a genetic algorithm has been embedded onto a 2-
robot system to allow for distributed parallel learning [19].
Pugh and Martinoli found that both GA and PSO could be
used for effective distributed parallel multi-robot learning in
[22].

To the best of our knowledge, no research has yet been
conducted on multi-robot learning in a heterogeneous swarm
with sensor/actuator variations. Heterogeneity only impacts
the learning process in multi-robot systems, as a controller
evolved in a single robot scenario will presumably only
be used on the same robot. Differences between robots
could potentially be useful in some situations; they might
encourage specialization within the swarm, as mentioned in
[11]. However, in our current case study where the robot
swarm evolves a single controller, heterogeneity is likelyto
make the learning process more difficult.

III. PARALLEL SWARM-ROBOTIC LEARNING CASE

STUDY: OBSTACLE AVOIDANCE

Expanding upon the work presented in [22], we use the
case study of obstacle avoidance for our swarm-robotic
learning task.

A. Experimental Setup

For the learning techniques, we use the noise-resistant GA
and PSO algorithms from [22]. GA uses elitism to select
the best half of the population as the parent set, and then
applies Roulette Wheel sampling to replenish the missing
chromosomes. PSO uses a local neighborhood in a ring
topology with one neighbor on each side. At every iteration,
these algorithms reevaluate their previous best locationsand
parent sets for PSO and GA, respectively, combining the
new fitness value with previous ones to get a more accurate
measure of the actual fitness. Although this requires twice
as many fitness evaluations at each iteration as their standard
counterparts, this technique prevents noisy fitness evaluations
from severely disrupting the learning process and gives
much better results given the same number of evaluations
of candidate solutions.

For both PSO and GA, initial population member elements
are randomly generated in the range[−20, 20] but allowed
to change to any value during evolution. Velocity in PSO is
also randomly initialized in the range[−20, 20] but prevented
from ever going outside this range.

The parameters for the algorithms are given in Table I.
We use Webots, a realistic simulator, for our robotic sim-

ulations [15], using 20 e-puck1 robots [3] (this is as opposed
to the Khepera robot [17] used in previous experiments).
The robot(s) operate in a 2.0 m x 2.0 m square arena with
no additional obstacles (see Fig. 1). The robotic controller is
a single-layer discrete-time artificial neural network of two
neurons, one for each wheel speed, with sigmoidal output
functions. The inputs are the eight infrared proximity sensors,

1http://www.e-puck.org

TABLE I

GA AND PSO PARAMETERS FORUNSUPERVISEDLEARNING

GA PSO

Population Size 20 Population Size 20

Mutation Probability 0.15 pw 2.0

Crossover Probability 0.2 nw 2.0

Mutation Range [-20.0, 20.0] w 0.6

as well as a recursive connection from the previous output
of the neuron, lateral inhibitions and bias values (see Fig.2),
giving us 22 weights total. Sensors have a maximum range of
5.0 cm, and sensor output varies linearly from 0 at maximum
range to 1 at minimum range (0.0 cm) with 3% noise. Slip
noise of 10% is applied to the wheel speed. The time step
for neural updates is 128 ms. We use the fitness function
used originally in [5] and again in [22]. The fitness function
is given by:

F = V · (1 −
√

∆v) · (1 − i)

0 ≤ V ≤ 1

0 ≤ ∆v ≤ 1

0 ≤ i ≤ 1

whereV is the average absolute wheel speed of both wheels,
∆v is the average of the difference between the wheel speeds,
and i is the average activation value of the most active
proximity sensor over the evaluation period. These factors
reward robots that move quickly, turn as little as possible,and
spend little time near obstacles, respectively. The terms are
normalized to give a maximum fitness of 1. The evaluation
period of the fitness tests for these experiments is 240 steps,
or approximately 30 seconds. Between each fitness test, the
position and bearing of the robots are randomly set by the
simulator to ensure the randomness of the next evaluation.

During evolution, each of the 20 robots is responsible for
a single member of the GA/PSO population (i.e. they must
evaluate that member at each iteration and communicate the
resulting fitness measure). With 100 iterations of the learning
algorithms, this results in a total simulated learning timeof
approximately 1 hour 40 minutes (100 iterations comprised
of 2 evaluations each lasting 30 seconds).

B. Results

The average performance over 100 runs of the best evolved
controllers in the population can be seen in Fig. 3. As pre-
viously found, PSO is able to achieve superior performance,
as GA occasionally produces poorer solutions. The progress
of evolution can be seen in Fig. 4. While GA improves
faster in the first few iterations, it quickly changes to a
gradually increasing plateau, while PSO continues improving
throughout the entire process.

Two primary types of obstacle avoidance controllers were
observed in successful evolutionary runs of both GA and
PSO. In the absence of obstacles, both types caused the



Fig. 1. Robot arena with e-puck robots.

robot to move ahead at full speed. The first controller
consistently made the robot perform either a right turn or a
left turn at the activation of any of its front sensors, thereby
avoiding the obstacle in its path. The second controller
used the recurrent neural connection to achieve a multi-
state behavior; the robot would run forward until the front
sensors detected an obstacle, at which point it would reverse
its wheel speed and run backwards at full speed. When the
rear sensors were activated, the robot would again resume
forward movement, resulting in a back-and-forth behavior
which somewhat resembles bouncing. Depending upon the
environment, either of these two types of behavior might be
preferable to the other.

IV. H ETEROGENEITY FROMSENSOROFFSETS

One potential variation between sensors is different offset
values (i.e. if some sensor A detects valuex, some other
sensor B would detectx + a, wherea is the offset value).
We can incorporate this variation in our simulation using
sensor values of:

v′i = vi + ai

wherevi is the original sensor value,v′i is the offset sensor
value used by the robot controller, andai is a Gaussian offset
value randomly generated at the start of the simulation with
mean of 0 and standard deviation ofs.

A. Experimental Setup

We repeat the experiments from section III using sensor
offsets with standard deviation of 0, 0.05, 0.1, 0.2, and
0.5 (corresponding to 0%, 5%, 10%, 20%, and 50% of the
maximum sensor value, respectively). In order to accurately
evaluate the performance of the controller, the original sensor
values are used for the proximity term of the fitness calcu-
lation. The same parameters are used for both GA and PSO.

Fig. 2. Depiction of the artificial neural network used for the robot
controller. Curved arrows are recurrent connections and lateral inhibitions.

GA PSO
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
itn

es
s

Fig. 3. Fitness of best evolved controllers in population after evolution
averaged over 100 runs for GA and PSO. Error bars represent standard
error.

B. Results

The average performance over 100 runs of the best evolved
controllers in the population for different levels of sensor
offset variation can be seen in Fig. 5. While the perfor-
mance is not highly impacted for a standard deviation of
up to 0.1, a significant decrease can be seen at 0.2, and
a standard deviation of 0.5 yields quite poor performance.
This suggests that neither GA nor PSO are affected by minor
variations, but major variations could cause some sensors to
be always/never perceived as active, which would cause very
poor performance. The same trend can be seen in both GA
and PSO, though it appears as though GA performs relatively
better with large offsets.



0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration

F
itn

es
s

GA
PSO

Fig. 4. Average fitness of population members throughout evolution
averaged over 100 runs for GA and PSO.

0   0.05 0.1 0.2 0.5 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
itn

es
s

GA
PSO

Standard Deviation of Gaussian Sensor Offset 

Fig. 5. Fitness of best evolved controllers in population after evolution
averaged over 100 runs for GA and PSO with different standarddeviations
(s) of sensor offset. Error bars represent standard error.

The performance of GA throughout learning with different
offset levels can be seen in Fig. 6. We notice that the trend of
rapid initial improvement followed by a gradually increasing
plateau is not affected, but rather performance seems to be
scaled down as the standard deviation of the offset grows. A
similar trend can be observed for the PSO results in Fig. 7.

V. HETEROGENEITY FROMSENSORSCALING

Another variation that can occur between sensors is sen-
sitivity. One sensor may be more sensitive to input, which
causes its output to vary more quickly than others. We can
model this in our simulation using the equation:

v′i = mivi

wherevi is the original sensor value,v′i is the offset sensor
value used by the robot controller, andmi is a Gaussian scal-

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Iterations

F
itn

es
s

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 6. Average fitness of population members throughout evolution
averaged over 100 runs for GA with different standard deviations (s) of
sensor offset.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

F
itn

es
s

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 7. Average fitness of population members throughout evolution
averaged over 100 runs for PSO with different standard deviations (s) of
sensor offset.

ing factor randomly generated at the start of the simulation
with mean of 1 and standard deviation ofs.

A. Experimental Setup

We repeat the experiments from section III using sensor
scaling factors with standard deviation of 0, 0.05, 0.1, 0.2,
and 0.5 (and mean of 1). In order to accurately evaluate the
performance of the controller, the original sensor values are
used for the proximity term of the fitness calculation. The
same parameters are used for both GA and PSO.

B. Results

The average performance over 100 runs of the best evolved
controllers in the population for different levels of sensor
scaling variation can be seen in Fig. 8. The performance
here is impacted less than for the case of sensor offsets; good
performance is maintained even for a scaling factor standard



0   0.05 0.1 0.2 0.5 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

itn
es

s
GA
PSO

Standard Deviation of Gaussian Sensor Scaling Factor 

Fig. 8. Fitness of best evolved controllers in population after evolution
averaged over 100 runs for GA and PSO with different standarddeviations
(s) of sensor scaling factors. Error bars represent standard error.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Iterations

F
itn

es
s

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 9. Average fitness of population members throughout evolution
averaged over 100 runs for GA with different standard deviations (s) of
sensor scaling factors.

deviation of 0.5, though we do see an observable decrease
here. The cause of this may be that, although the sensitivity
is changed, sensors still react is the same way (i.e. higher for
close proximity, lower for far proximity), and therefore the
performance of the controller is not significantly impacted.
We again see the same trend in both GA and PSO, and GA
again performs relatively better with large scaling variations.

The performance of GA throughout learning with different
scaling levels can be seen in Fig. 9. As a result of the better
performance, there is not such an obvious decrease as the
standard deviation of the scaling grows, as we see the same
trend in all cases. Differences between curves is more visible
for PSO, where the performance decreased more for higher
scaling variation (see Fig. 10).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

F
itn

es
s

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 10. Average fitness of population members throughout evolution
averaged over 100 runs for PSO with different standard deviations (s) of
sensor scaling factors.

VI. D IVERSITY IN EVOLVING ROBOT SWARMS

Although PSO was able to achieve superior performance
to GA in evolving robotic controllers in [21] and [22], the
reasons for this were never apparent. A major drawback to
using stochastic multi-agent algorithms such as GA and PSO
is that they lack transparency about what exactly is happening
during the evolutionary process and why they achieve the
results that they do. In an attempt to shed some light on
this issue, we analyze the diversity of the GA and PSO
populations through their evolution.

A. Experimental Setup

Many different metrics can be used to measure the di-
versity of a set of numerical vectors. For our study, we
choose one of the most simple and most common: Euclidean
distance. The pairwise diversity between two members of a
population is therefore given by:

d(a, b) =

√

∑

i

(ai − bi)2

whered(a, b) is the pairwise diversity between membera and
memberb, andxi is element i of memberx. The diversity
of the entire population is given by the average pairwise
diversity of all pairs of members in the population, or:

D =
1

N(N − 1)

∑

a





∑

b6=a

d(a, b)





wherea andb are members of the population, andN is the
total size of the population.

We measure diversity throughout evolution for parallel
learning using GA and PSO for homogenous robotic swarms
and for heterogeneous robotic swarms with sensor offsets.
We keep the same scenario and parameters as used previ-
ously.



0 20 40 60 80 100
50

60

70

80

90

100

110

120

130
D

iv
er

si
ty

GA
PSO

Fig. 11. Diversity of population members throughout evolution averaged
over 100 runs for GA and PSO for a homogenous robot swarm.

B. Results

The progress of population diversity throughout evolution
for GA and PSO on a homogenous swarm can be seen in Fig.
11. The diversity in GA drops quickly in the initial iterations
and maintains a stable lower value for the rest of the
evolution. In contrast, the diversity of PSO actuallyincreases
initially and maintains a higher value. This is evidence for
the hypothesis given in [22] that by very quickly converging
to a good candidate solution, GA sacrifices the ability to
further explore for better possible solutions, which causes it
to occasionally converge to a mediocre final solution. On
the other hand, by maintaining high diversity throughout
evolution, PSO is able to continuously discover new and
better solutions and continue improving throughout the entire
evolution. This also demonstrates why PSO is better able to
maintain good performance with a smaller population size,
while GA does very poorly with small populations since it
requires enough genetic diversity to already include a good
solution.

We can also compare the progression of diversity for evo-
lution of heterogeneous robotic swarms with sensor offsets
using GA (see Fig. 12) and PSO (see Fig. 13). In the case
of GA, we see that the more offset variation there is, the
higher the final diversity value. This is likely the result of
less convergence in the GA population, as candidate solutions
which work well on one robot may not do so on another,
which would help maintain genetic variation somewhat. For
PSO, there is no significant change in diversity for low sensor
offset variations; for higher variations, the diversity grows
more slowly initially and more quickly at the end of the
evolution. This may be caused by less useful information
sharing between robots due to major sensorial differences,
promoting individual reliance. This prevents the initial rapid
diversity increase observed in the communicating swarm
but also prevents any convergence which would limit the
diversity in the latter evolutionary stages.

0 20 40 60 80 100
50

55

60

65

70

75

80

Iterations

D
iv

er
si

ty

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 12. Diversity of population members throughout evolution averaged
over 100 runs for GA with different standard deviations (s) of sensor offset.

0 20 40 60 80 100
70

80

90

100

110

120

130

140

Iterations

D
iv

er
si

ty

s = 0.0
s = 0.05
s = 0.1
s = 0.2
s = 0.5

Fig. 13. Diversity of population members throughout evolution averaged
over 100 runs for PSO with different standard deviations (s) of sensor offset.

VII. D ISCUSSION

For parallel swarm-robotic learning of obstacle avoidance
behavior, offset variation seemed to have a much higher
impact on performance than scaling variation. However, it
is highly likely that this result is specific to our case study.
As mentioned previously, because of the linear manner in
which proximity sensors are used (i.e. higher - there is an
obstacle, lower - there is no obstacle), scaling does not have
much effect, while offset variation could potentially confuse
the sensor as to its current state. One can envision other
scenarios where this is not the case: if a sensor has some
intermediate optimum value, both offset and scaling would
disrupt its reading; comparing subsequent sensor readings
would remove any offset bias but still be affected by scaling.
Therefore, parallel learning in heterogeneous robotic swarms
needs to be tested on many other case studies before any such
generalizations can be made.



Although not shown here, we also performed several
parallel swarm-robotic learning tests using PSO without any
velocity limit (w was kept at0.6). While the performance of
the resulting controllers was not significantly different,the
diversity of the population exploded, growing exponentially
until the end of the evolution (it was not uncommon to
have a final diversity on the order of 100,000). The plateau
previously observed is therefore only caused by a hard
velocity bound. We believe the reason for this explosive
behavior is the same as the reason for the low impact of
variations in sensor scaling; ANNs continue to function
nearly the same if every weight is multiplied by a constant
factor. The only change will be the sensitivity of the sigmoid
output function, which will approach a step function as the
neural weights increase.

VIII. C ONCLUSION AND OUTLOOK

We have explored some of the effects of robot heterogene-
ity on parallel swarm-robotic learning. In the case of evolving
obstacle avoidance, both Genetic Algorithms and Particle
Swarm Optimization were able to withstand small variations
in sensor offsets and large variations in sensor scaling factors,
while showing poor performance with high offset variations.
By observing population diversity throughout evolution, we
discovered that PSO maintains much higher diversity, which
could explain its superior ability to GA in avoiding local
optima.

Though not explored here, there could be ways in which
heterogeneous robotic swarms could identify differences
between robots by comparing the performance of shared
controllers. This information could be used to avoid the
fitness degradation previously observed and might even be
useful for deliberately pursuing specialization within the
swarm if not limited to evolving one single controller.

We have shown that tracking population diversity can yield
some insight into the progress of the evolving swarm. One
could therefore imagine that these learning algorithms could
be improved if they were to track their own diversity. A
simple example would be allowing GA to scale the values
of some of its population members if the diversity were too
low. While calculating the diversity of the entire population
requires a global manager, it might be feasible for individual
robots to acquire a good estimation using local sensing of
nearby teammates, which could allow this change to be
implemented in a distributed fashion.

REFERENCES

[1] Antonsson E. K, Zhang Y., & Martinoli A. “Evolving Engineering
Design Trade-Offs” Proc. of the ASME Fifteenth Int. Conf. onDesign
Theory and Methodology, September 2003, Chicago, IL, USA, paper
No. DETC2003/DTM-48676.

[2] Balch, T. Behavioral diversity in learning robot teams. PhD Thesis,
College of Computing, Georgia Institute of Technology, 1998.

[3] Cianci, C., Raemy, X., Pugh, J., & Martinoli, A. (2006) “Communi-
cation in a swarm of miniature robots: The e-puck as an educational
tool for swarm robotics” Swarm-Robotics Workshop, Springer Lecture
Notes in Computer Science (2007), Vol. 4433, pp. 103-115.

[4] Eberhart, R. & Kennedy, J. “A new optimizer using particle swarm
theory” Proc. of the Sixth Int. Symposium on Micro Machine and
Human Science, MHS ’95, 4-6 Oct 1995, pp. 39-43.

[5] Floreano, D. & Mondada, F. “Evolution of Homing Navigation in a
Real Mobile Robot” Systems, Man and Cybernetics, Part B, IEEE
Transactions on, Vol. 26, No. 3, Jun 1996, pp. 396-407.

[6] Fourie, P. C. & Groenwold, A. A. “The particle swarm optimization
algorithm in size and shape optimization” Struct. Multidisc. Optim.,
2002, Vol. 23, pp. 259-267.

[7] Goldberg, D. E.Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison-Wesley, Reading, MA, 1989.

[8] Kelly, I. D. & Keating, D. A. “Faster learning of control parameters
through sharing experiences of autonomous mobile robots” Int. Journal
of System Science, 1998, Vol. 29, No. 7, pp. 783-793.

[9] Kennedy, J. & Eberhart, R. “Particle swarm optimization” Neural
Networks, 1995. Proceedings., IEEE International Conference on,
Vol.4, Iss., Nov/Dec 1995, pp. 1942-1948.

[10] Kennedy, J. & Spears, W. M. “Matching algorithms to problems: an
experimental test of the particle swarm and some genetic algorithms
on the multimodal problem generator” in Proceedings of IEEEInter-
national Conference on Evolutionary Computation, Anchorage, May
1998, pp. 78-83.

[11] Li, L., Martinoli, A. & Abu-Mostafa, Y. “Learning and Measuring
Specialization in Collaborative Swarm Systems” Adaptive Behavior,
2004, Vol. 12, No. 3-4, pp. 199-212.

[12] Matarić, M. J. “Learning to Behave Socially” In Proc. of the 3rd
Int. Conf. on Simulation and Adaptive Behaviors - From animals to
animats 3, 1994, pp. 453-462.

[13] Matarić, M. J. & Cliff, D., “Challenges in evolving controllers for
physical robots”, Robot. and Autonomous Syst., 1996, Vol. 19, No. 1,
pp. 6783.

[14] Matarić, M. J. “Learning in behavior-based multi-robot systems:
Policies, models, and other agents” Special Issue on Multi-disciplinary
studies of multi-agent learning, Ron Sun, editor, Cognitive Systems
Research, 2001, Vol. 2, No. 1, pp. 81-93.

[15] Michel, O. “Webots: Professional Mobile Robot Simulation” Int. J. of
Advanced Robotic Systems, 2004, Vo. 1, pp. 39-42.

[16] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, 1996.

[17] Mondada, F., Franzi, E. & Ienne, P. “Mobile robot miniaturisation:
A tool for investigation in control algorithms” Proc. of theThird Int.
Symp. on Experimental Robotics, Kyoto, Japan, October, 1993, pp.
501-513.

[18] Murciano, A., Millán, J. R., Zamora, J. “Specialization in multi-agent
systems through learning” Behavioral Cybernetics, 1997, Vol. 76, pp.
375-382.

[19] Nehmzow, U. “Learning in multi-robot scenarios through physically
embedded genetic algorithms” In Proc. of the 7th Int. Conf. on the
Simulation of Adaptive Behavior: From animals to animats, 2002, pp.
391-392.

[20] Nolfi, S. & Floreano, D. Evolutionary Robotics: The Biol-
ogy,Intelligence,and Technology. MIT Press, Cambridge, MA, USA,
2000.

[21] Pugh, J., Zhang, Y. & Martinoli, A. “Particle swarm optimization for
unsupervised robotic learning” IEEE Swarm Intelligence Symposium,
Pasadena, CA, June 2005, pp. 92-99.

[22] Pugh, J. & Martinoli, A., 2006. “Multi-Robot Learning with Parti-
cle Swarm Optimization” International Conference on Autonomous
Agents and Multiagent Systems, Hakodate, Japan, May 8-12, pp. 441-
448.

[23] Stone, P.Layered Learning in Multi-Agent Systems. PhD Thesis,
School of Computer Science, Carnegie Mellon University, 1998.

[24] Stone, P. & Veloso, M. “Multiagent Systems: A Survey from a
Machine Learning Perspective” Autonomous Robots, 2000, Vol. 8,
No. 3, pp. 345-383.


