
1

GossiCrypt: Wireless Sensor Network Data
Confidentiality Against Parasitic Adversaries

Jun Luo? Panos Papadimitratos† Jean-Pierre Hubaux†

Abstract— Resource and cost constraints remain a challenge
for wireless sensor network security. In this paper, we propose
a new approach to protect confidentiality against a parasitic
adversary, which seeks to exploit sensor networks by obtaining
measurements in an unauthorized way. Our low-complexity
solution, GossiCrypt, leverages on the large scale of sensor
networks to protect confidentiality efficiently and effectively.
GossiCrypt protects data by symmetric key encryption at their
source nodes and re-encryption at a randomly chosen subset
of nodes en route to the sink. Furthermore, it employs key
refreshing to mitigate the physical compromise of cryptographic
keys. We validate GossiCrypt analytically and with simulations,
showing it protects data confidentiality with probability almost
one. Moreover, compared with a system that uses public-key data
encryption, the energy consumption of GossiCrypt is from tens
to thousands of times lower.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been an active field
of research over the last few years, with a number of technical
issues largely resolved. Onwards wider adoption, security be-
comes increasingly important and, eventually, security mech-
anisms a prerequisite [34]. Numerous significant efforts have
been made along this line, including public-key cryptography
(e.g., [42], [19]) as the means to digitally sign messages and
establish symmetric keys, as well as symmetric-key based
encryption and authentication for improved efficiency (e.g.,
[35], [24]). However, sensor data confidentiality has been
largely overlooked to this date. Ensuring that sensor-collected
data are accessed only by authorized entities has been viewed
mostly as a secondary concern.

Encrypting data at their source sensor node, with a symmet-
ric key shared with the sink, is a straightforward confidentiality
mechanism. However, it does not fully address the problem
at hand. An adversary can actively exploit the poor physical
protection of nodes, as it would be too costly and thus unreal-
istic to make them tamper-resistant. It is relatively easy for an
adversary to physically access the node memory contents [22],
and extract the symmetric key used for data encryption. Such
an attack is vastly simpler than a cryptanalytic one against the
keys. In fact, the adversary could progressively compromise
keys of numerous nodes, and eventually be able to decrypt a
significant fraction of, if not all, data produced by the WSN.

∗Jun Luo is with the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. Email:
j7luo@engmail.uwaterloo.ca.
†Panos Papadimitratos and Jean-Pierre Hubaux are with the School of

Computer and Communication Sciences, EPFL (Swiss Federal Institute
of Technology in Lausanne), CH-1015, Lausanne, Switzerland. Emails:
{panos.papadimitratos, jean-pierre.hubaux}@epfl.ch.

We are concerned with sensor data confidentiality in such
a setting, where cryptographic keys can be physically com-
promised. We focus on a novel type of adversary we term
parasitic: it seeks to exploit a WSN, e.g., deployed for
scientific measurements, industrial (mining, oil) field data,
or even patients’ health data collection, rather than disrupt,
degrade, or prevent the WSN operation. A parasitic adversary,
defined in detail in Sec. III, aims at obtaining measurements
with the least expenditure of own resources, and the least
disruption of the WSN it “attaches” itself to. Essentially, the
longer the symbiotic relation of the adversary with a fully
functioning WSN remains unnoticed, the more successful the
parasitic adversary will be.

One naive solution against (symmetric) key compromise
is to let sensors encrypt each outgoing measurement with
the public key of the sink. As long as the sink is not
compromised, it is the only one able to decrypt those message
and the parasitic adversary is thwarted. However, software
implementations of public-key operations, albeit computation-
ally feasible, consume energy approximately three orders
of magnitude higher than symmetric key encryption [36].
Hardware implementations of public key encryption (PKE),
although significantly reducing energy consumption, remain
accordingly costlier than symmetric-key encryption (SKE)
hardware implementations (Sec. V-B).

Therefore, we are facing the challenge of protecting data
confidentiality against parasitic adversaries in an energy effi-
cient manner. To this end, we propose here GossiCrypt, whose
mechanisms are tailored to and leverage on the salient features
of WSNs. GossiCrypt comprises two building blocks: (i) a
probabilistic en-route re-encryption scheme, with the source
node always encrypting the data and with relaying nodes en
route to the sink flipping a coin to “decide” whether to perform
re-encryption, and (ii) a key refreshing mechanism that installs
new sensor-sink shared symmetric keys to selected nodes.

Key refreshing is the immediate response to the compromise
of a cryptographic key, but it can mitigate such an attack only
to a certain extent: it is hard for the WSN operator to infer
which keys were compromised. Also, running a network-wide
key distribution protocol frequently can be very costly in an
energy-constrained environment. More importantly, within two
refreshing events, the adversary would still be fully capable
to decrypt data from nodes whose keys were compromised.
This is where the en-route re-encryption complements our
(infrequent) key refreshing: data (or keys) can be decrypted
by the adversary only if all the keys used for source and en-
route encryption are compromised.

GossiCrypt has extremely simple key management require-

2

ments and very low complexity operation. Each sensor shares
one data encryption symmetric key with the network sink. In
addition, a single parameter drives probabilistically the partic-
ipation of each node in en-route encryptions. This simplicity
is inherent in gossiping protocols, with nodes flipping a coin
to determine, e.g., if they should synchronize their databases
or relay a message [14], [20]. This inspires the name of our
scheme, as the decision is on (re-)encrypting rather than on
relaying a packet. The simplicity in operation is also true
for key refreshing performed with randomly chosen nodes.
Overall, simplicity renders GossiCrypt broadly applicable.

Our main contribution is an efficient and highly effective, as
our evaluation shows, scheme to ensure sensor data confiden-
tiality. The objectives of GossiCrypt are specified in Sec. IV.
We validate the effectiveness of our scheme analytically and
experimentally. Attacked by a parasitic adversary that con-
tinuously compromises new nodes to obtain their encryption
keys, GossiCrypt protects the confidentiality of data with
probability almost one. At the same time, the comparison
with a public-key encryption (PKE) solution shows that the
GossiCrypt energy expenditure is significantly lower than
that of PKE. Another contribution is the introduction of the
parasitic adversary, a realistic type of attacker for a wide
range of commodity and tactical WSNs. To the best of our
knowledge, this is a novel yet realistic and highly effective,
unless thwarted, type of adversary.

In the rest of the paper, we first provide the system and
adversary models. Then, we present an overview of our
scheme and present in detail its constituent protocols. In Sec. V
and VI, we analyze our scheme and provide an experimental
validation. Finally, we discuss related work in Sec. VII, before
our future work and conclusion.

II. SYSTEM MODEL

The WSN comprises N sensor nodes, each with a unique
identity Si, and a network sink Θ performing data collection
and key refreshing. It is straightforward to consider multiple
sinks, even with distinct roles, yet we omit this for simplicity
in presentation. Each node Si shares a symmetric key, Ki,Θ,
with the sink, and knows the public key, PuKΘ, of the sink.
The sink is equipped with all Ki,Θ.

Beyond these end-to-end, sensor-to-sink, associations, nodes
may share symmetric keys with their neighbors, to enable
link-layer security primitives (e.g., TinySec [24]) or for other
security purposes (e.g., revocation [12] or secure routing [25]).
However, such security mechanisms are beyond the scope of
this work and they can clearly coexist with our scheme.

We describe the data of interest with the help of two
parameters, T and δ; the user seeks to collect data:
• From a fraction 0 < δ ≤ 1 of the WSN nodes,
• Over a period of T seconds, for each node Sj , for j =

1, . . . , dδNe.
The actual values of T and δ can vary. T can range from

a short period, t0, for a single sensor measurement, to a
sufficiently long period for a comprehensive measurement
collection. In general, T = kt0, with k > 0 an integer.
Similarly, δ = 1/N , i.e., targeting at a certain node, may be

meaningful, but in practice δ will be a significant fraction of
N .1 We do not dwell on the exact measurement extraction
method, which can be performed in many ways orthogonal to
our scheme.

We assume that N ranges from hundreds to thousands,
as, for example, in WSNs for commercial inventory, habitat
monitoring, industrial and mining field data, and geologi-
cal measurements. Experience from prior deployments, with
nodes’ placement sparser than the monitored physical system
and a relatively long history of measurements necessary to
capture the studied phenomena, teaches that data sensed by
each and every node is significant. This implies that in-network
data aggregation is not an option in such deployments; we
assume this is so in this work. We also assume WSNs enabling
applications that do not undergo development. Thus, the entire
operating system (apart from certain tunable parameters) is
stored in read-only memory (ROM). Finally, WSN nodes are
not tamper-resistant or store cryptographic keys in tamper-
resistant components, due to cost considerations.

III. ADVERSARY MODEL

We identify a new type of adversary we denote as parasitic.
Its objective is to exploit deployed wireless sensor networks,
by accessing in an unauthorized manner data collected by
those WSNs. More specifically, a parasitic adversary:

1. Seeks to obtain the WSN data collected according to the
parameters δ and T .

2. Can be physically present, at each point in time, only
at a much smaller fraction of the area covered by dδNe
sensor nodes.

3. Can physically access data stored at sensor nodes and
retrieve their cryptographic keys.

4. Can be mobile [31], i.e., compromise different sets of
nodes over different time intervals. “Mobile” tradition-
ally refers to virtual moves (in terms of compromising
system entities); here, it also represents physical moves
of the adversary.

5. Can compromise in the above-described manner at most
one sensor per τ seconds. We assume τ � T .

The characteristics of the parasitic adversary reflect its real-
ism. Constrained presence (assumption 2) is meaningful, be-
cause, otherwise, the adversary could deploy its own WSN and
trivially obtain the data the WSN user collects (assumption 1).
It exploits obvious weaknesses of WSNs (assumption 3): poor
physical protection makes it relatively easy to obtain data en-
cryption keys [22]. The parasitic adversary is unobtrusive, that
is, cannot modify the implemented protocols stored in ROM
(Sec.II). Furthermore, it can utilize its resources intelligently.
Mobility (assumption 4), illustrated in Fig. 1, shows that the
adversary can be in the proximity of different nodes for periods
of time during which it either compromises the node or obtains
snapshots of the measurement histories.

The strength of the adversary is evident from assumption 5:
the time needed to physically compromise a single node, albeit

1WSNs deployed for (often one-time) event detection (e.g., forest fire or
bridge structural faults) would correspond to δ = 1, and T equal to the period
from the WSN deployment to the event/alarm occurrence.

3

.
.
.

node 1

node 2

node n

node 3

Time lines of data histories

(Virtual) mobility
of the adversary

Fig. 1. Mobility of the parasitic adversary.

significant if nodes are carefully designed, is much shorter than
T , the period over which data are to be collected. In other
words, the benefit of the adversary from compromising sensor
nodes is far reaching. Compromising a key does not imply
the adversary automatically obtains the node’s measurements.
The adversary could remain within range of the compromised
node and achieve that. But such an attack would be self-
defeating: from assumption 2, the adversary would certainly
capture much less than dδNe measurements. From a different
point of view, assumption 2 captures the difficulty to deploy
a network of eavesdroppers within one hop of all previously
compromised nodes. The eavesdroppers’ transceivers would
need to be highly sensitive (and thus more expensive than
that of a sensor node) to cover a meaningful fraction of the
targeted WSN. Overall, leaving “sentry” nodes behind would
be comparable to the deployment of a WSN by the adversary.

We assume that the protocol design and implementation are
such that remote node compromise is prevented. For example,
the adversary cannot exploit arbitrary software weaknesses
and make a sensor node disclose its cryptographic keys.
Such robustness should be possible given the relatively simple
functionality of WSN node software, compared to that of
more complex systems (e.g., desktop or portable computers).
We also assume that the sink cannot be compromised by the
adversary. Readers are referred to [44] for the investigations
on compromise of low-end mobile sinks. Moreover, denial-of-
service (DoS) attacks, including jamming in various protocol
layers [43], [28], Sybil/Node replication attacks [30], [33],
or “wormhole” formation [8], [37] are beyond the scope of
this work: countermeasures to those attacks can coexist with
our protocols. Neither do we consider physical destruction of
WSN nodes, which would not benefit the adversary.

IV. GOSSICRYPT

GossiCrypt aims at ensuring confidentiality, that is, prevent-
ing any unauthorized access to data collected by a WSN. It
does not seek to protect data coming from every single sensor,
but rather intends to fulfill the following property, for some
protocol-specific constant 0 < ∆ < 1:

∆T−Confidentiality: Data collected from a WSN comprising
N nodes are ∆T−confidential if the adversary cannot obtain
all measurements performed by more than dN∆e sensor nodes
over a given time interval T .

Data reprot Data query

Fig. 2. Securing data collection with GossiCrypt and query authentication
(µTESLA [32] for example).

This is a safety property, i.e., a property related to a system-
specific unwanted situation: obtaining measurements from a
given fraction of sensor nodes over a period of time, meaning-
ful with respect to the system and application, is prevented. In
Sec. V-A we will show that GossiCrypt satisfies this property
against parasitic adversaries with probability almost one.

We emphasize that GossiCrypt does not seek to provide
sensor data authenticity and integrity. The reason is that if a
key is compromised, an adversary (not necessarily a parasitic
one) can impersonate the corresponding sensor and inject
fabricated messages. Nonetheless, data that originate from
non-compromised nodes have their authenticity and integrity
protected. We also clarify that GossiCrypt does not seek to
hide the identities of sensor nodes, achieve data source un-
traceability, or satisfy any notion of anonymity, unlinkability,
or privacy. Clearly, confidentiality relates to privacy, but, again,
all GossiCrypt seeks to provide is the confidentiality of the data
provided by sensor nodes.

A. Data Encryption

We distinguish sensor nodes into two categories, data
sources and relaying nodes, with each node assuming either
role at different points in time. We denote the data encryption
operation of GossiCrypt as GossiCryptE and illustrate in
Fig. 2: it is executed by nodes on the path from a data source
to a sink (inclusive), with the outcome (i.e., re-encrypting or
not) at each relaying node being random (with probability q).

The path may be one hop, if the sink is within the transmis-
sion range of the sensor node, but this is not cost-effective; in
general, the sink is at a distance of multiple hops from data
source(s). The path discovery is orthogonal to GossiCryptE . It
can be determined by a (secure) routing protocol, for example,
forming an authenticated tree rooted at the sink [35], possibly
on-the-fly, as a result of the query sent out from a sink.
GossiCryptE can be employed on top of any path discovery
protocol and does not impose extra requirements. For the rest
of the discussion, we assume that, minimally, each Si knows
the next node towards Θ on a pathSi,Θ without the transmitted
packet carrying the routing information.

For a sensor measurement m, a symmetric key Ki,Θ shared
by Θ and Si, a message authentication code MAC(Ki,Θ, . . .),
and q ∈ (0, 1) the protocol-specific parameter governing the
re-encryption, GossiCryptE(Ki,Θ, pathSi,Θ, q,m) is invoked
by Si acting as a source:

4

1. Source node, Si:
1.a. Generate a nonce n for the communication with

sink Θ.
1.b. Calculate H = MAC(Ki,Θ,m, n, Si).
1.c. Encrypt m,n,H with Ki,Θ to obtain ciphertext

σi = {m,n,H}Ki,Θ .
1.d. Transmit packet pi = σi, Si to the first relaying

node Sj on pathSi,Θ.
2. Relaying node, Sj:

2.a. Upon receipt of a packet pi, generate a random
number x ∈ [0, 1]. If x > q, relay pi to the next
relaying node Sk on pathSj ,Θ, or to Θ. Otherwise,

2.b. Generate ciphertext σj = {pi}Kj,Θ .
2.c. Append own identity Sj to σj .
2.d. Relay packet pj = σj , Sj to the next relaying node

Sk along pathSj ,Θ, or to Θ.
3. Sink Θ:

3.a. Upon receipt of a packet pk, retrieve Kk,Θ, the key
shared with Sk, and decrypt σk. If the source clear-
text, m,n,H , is obtained, go to (c). Otherwise,

3.b. Obtain ciphertext σl and Sl. Decrypt σl with Kl,Θ.
Repeat successively for all Sl that re-encrypted the
packet, till obtaining the source clear-text m,n,H .

3.c. Determine if n was previously seen. If so, discard
the packet. Otherwise,

3.d. Compute H ′ = MAC (Ki,Θ,m, n, Si). Discard the
packet if H ′ 6= H . Otherwise, deliver m to the
WSN user.

B. Key Refreshing

To defend against the progressive compromise of an in-
creasing number of nodes, Ki,Θ keys should be refreshed, i.e.,
replaced with new K ′

i,Θ keys. The sink is typically unaware
of which nodes are already compromised. Thus, it selects
randomly an Si node to refresh, among a set of N ′ ≤ N nodes.
This selection is, in general, made among the data source
nodes of interest (the δ fraction of N as defined in Sec. II),
and all the intermediate nodes that connect those sources to
the sink. In other words, the refreshing effort focuses on the
same part of the network that is meaningful for the adversary
to target.

Given a particular system design for the nodes, it is not
very difficult to have an arguably pessimistic estimation of
the rate of physical node compromise, as per Sec. III. Then,
based on this estimate of τ−1, the key refreshing rate λr can
be selected accordingly by the sink, and conveyed to all nodes
via an authenticated control message. Confidentiality of λr is
not needed, as the adversary would, at best, compromise nodes
at its maximum possible rate τ−1. Authenticity, however, is
clearly required, to ensure that an active adversary does not
“slow down” the key refreshing.

Symmetric key based key transport techniques, similar to
those in [1], are effective only if the adversary, having previ-
ously compromised Ki,Θ, cannot intercept the refresh protocol
messages. Moreover, an interactive key establishment protocol,
for example, initiated by the sink, would reveal the identity of
the node whose key is being refreshed. The adversary could

easily eavesdrop all messages sent and received from the sink,
and hence gain a significant advantage: to know which nodes
were refreshed and then re-compromise them.

To thwart these two vulnerabilities, we propose a key
refreshing protocol with two variants. This is essentially a key
transport protocol; but it leverages on (i) the GossiCryptE

operation, with optional public key encryption at the source
sensor node, and (ii) the integration of the key refreshing with
the data collection. As a result, the key refreshing protocol is
similar to the data encryption protocol, presented in Sec. IV-
A. There are two main differences: a random point process
generator [10] RGen(λr) used to generate (key refreshing)
events with intensity λr, and a flag set to indicate to the sink
that a new key K ′

i,Θ is included in the message (which, oth-
erwise, externally appears identical to any measurement/data
reporting message). The protocol operates as follows:

1. Source node, Si:
1.a. Upon an event of RGen(λr), generate a new key

K ′
i,Θ; wait for the time till the next data report.

1.b. Upon a data report to be returned, delay the report
to be combined with the next one and generate a
nonce n for the communication with sink Θ.

1.c. Calculate H = MAC(Ki,Θ,flag ,K ′
i,Θ, n, Si).

1.d. Encrypt flag ,K ′
i,Θ, n,H with Ki,Θ, to obtain ci-

phertext σi = {flag ,K ′
i,Θ, n,H}Ki,Θ .

1.e. Transmit packet pi = σi, Si to the first relaying
node Sj on pathSi,Θ.

2. Relaying node, Sj:
Identical to the operation for GossiCryptE (Sec. IV-A).

3. Sink Θ:
3.a. Perform the steps (3).(a)-(b) as specified in Sec. IV-

A, to obtain the clear-text flag ,K ′
i,Θ, n,H .

3.b. Determine if n was previously seen. If so, discard
the packet. Otherwise,

3.c. Calculate H ′ = MAC(Ki,Θ,flag ,K ′
i,Θ, n, Si). If

H ′ 6= H , discard the packet. Otherwise, replace
Ki,Θ with K ′

i,Θ.
The protocol installs a new key even if the adversary

intercepts the message en route to the sink, unless the ad-
versary is physically within one hop from the previously
compromised and now to-be-refreshed Si. In the later case
(which is extremely rare due to the restrained physical present
of an adversary), the adversary can decrypt the message and
obtain the key. To prevent this, we propose the following
variant of the above protocol:

1. Source node, Si: Identical to the above key refreshing
operation, with the additional step between (b) and (c),
and replacing K ′

i,Θ with σκi afterward:
1.b+. Encrypt K ′

i,Θ with PuKΘ, the public key of
the sink, and obtain the ciphertext σκi =
{Si,K

′
i,Θ}PuKΘ .

2. Relaying node, Sj:
Identical to the operation for GossiCryptE (Sec. IV-A).

3. Sink Θ: Identical to the above key refreshing operation,
with the additional step:
3.d. Decrypt σκi with PrKΘ and check if the obtained

node identity is Si. If so, replace Ki,Θ with K ′
i,Θ.

5

This second variant’s use of PKE resembles mechanism 1 of
the ISS/IEC 11770-3 standard [2]. It ensures that even in the
unlikely event the adversary is within one hop of the refreshed
node, still, it cannot obtain the new K ′

i,Θ. The only option for
the adversary would be to re-compromise Si.

V. PROTOCOL ANALYSIS

We analyze the security level of GossiCrypt and also
compare its energy expenditure with a possible alternative
in this section. Our security analysis focuses only on the
parasitic adversary; further discussion on general adversaries
are given in Sec. VII. The security analysis applies to both
data encryption and key refreshing (with or without PKE)
protocols, as they essentially follow the same principle.

A. Security Analysis

In this section, we describe a model of GossiCrypt and
evaluate it against the ∆T−Confidentiality property (Sec. IV)
and the parasitic adversary (Sec. III). Our analysis, accompa-
nied by simulation results in Sec. VI, shows that even with a
significant fraction of sensor nodes compromised, GossiCrypt
safeguards confidentiality with probability almost one.

Fundamental for the analysis is the fraction of correct, i.e.,
not compromised, nodes; this is determined by the behaviors
of the sink refreshing and the adversary compromising keys.
Therefore, we model the state of the system, the number of
correct nodes, as a stochastic process. Our security analysis on
GossiCrypt is based on the stationary regime of this process.

Since the sink cannot in general know which keys are
already compromised, a randomized strategy on selecting
which node to refresh is a reasonable choice. We assume that
the sink does so with an effective2 refresh rate λ. Recall that
the sink governs the selection procedure through setting the
parameter λr.

The adversary, compromising nodes at rate τ−1, is also
modeled as selecting the next node to compromise (or to
test if the key was refreshed)3 arbitrarily. This is so, because
the adversary would not be more effective by choosing a
deterministic attack pattern. To illustrate this, consider a static
sink network, where the adversary might gradually, over a
long period of eavesdropping, infer (part of) the sensors-
sink communication paths. Such an adversary could first
compromise the sink neighboring sensor nodes, and then move
outwards, compromising their upstream nodes. This might
allow the adversary to fight back only against symmetric-key
based refreshing: this would be possible only if it compro-
mised the entire path connecting the refreshed node to the
sink. In contrast, this attack would be completely ineffective
against a public key based refreshing (as described in Sec. IV-
B). Therefore, the deterministic, targeted compromise pattern

2The model covers the two options (with or without PKE) of the key
refreshing protocol described Sec. IV-B. Although the key refreshing without
PKE might allow the adversary to obtain the new key, it is still highly possible
that new keys are not exposed to the adversary, as the adversary cannot be
ubiquitously present (also pointed out in [5]). Thus, the model still applies
but with the refreshing rate λr discounted by a factor.

3A model that assumes the rate of testing differing from that of compro-
mising does not fundamentally change the stationary distribution.

would be no more effective than a random one. 4 Although an
adversary physically close to a source node Si, may detect a
key-refreshing, its physical presence is limited to a negligible
fraction of the network. Note that re-encryption deprives the
adversary from this ability elsewhere.

The system size depends on the behavior of the sink. If the
sink is static and the data collection paths change slowly, if
at all, over time, both the sink and the adversary could have
a clear view on which nodes they need to target: the source
sensor nodes of interest and the relaying nodes en-route to the
sink. Or better even, from the adversary’s point of view, the
slightly smaller subset of sources and relaying nodes en-route
to the point it intercepts the measurement packets. As a result,
the system is this known subset of nodes with size N ′ < N .
On the other hand, if a mobile sink is used [23], [41], [27], the
adversary cannot predict the data collection paths. This results
in a larger system size, which essentially can be all nodes,
offering higher robustness against the adversary at the expense
of complexity in operating the mobile sink. We emphasize
however that our analysis is applicable to both cases. All one
needs to do is to view N below as the effective system size.

We assume that the times of performing refreshing and
compromising can be modeled as two independent Poisson
processes with intensities λ and τ−1 respectively. We also
assume that, at each time point in the processes, either the sink
approaches a node and refreshes it or the adversary captures
a node and compromises it, no matter whether the node has
been compromised or not. The Poissonian and independence
assumptions are not essential. The easily drawn analogies
between our model and the teletraffic models [7] imply that the
stationary distribution is insensitive to all other characteristics
beyond the intensities.

Based on these assumptions, we describe the system states
as a continuous Markov chain {X(t)}t≥0 driven by the
Poisson processes. Since such a chain is characterized by its
subordinated chain {X̂n}n≥0 [10], we focus on this discrete
Markov chain. A direct observation on the system is that
the more numerous the compromised nodes, the less the
efficiency of the adversary (thus the higher the efficiency
of the sink) is and vice versa. The reason is clear: when
many nodes are compromised, the probability of fruitlessly re-
compromising becomes high. This reminds us of the celebrated
model described by Paul and Tatiana Ehrenfest (sometimes
referred to as The Urn of Ehrenfest) [16] for understanding
the diffusion through a porous membrane.5 The system we

4This is also true when one considers that public key encryption (PKE)
refreshing is robust against an adversary in range of a refreshed node. We
also note that it is also possible that the sink counters deterministic attack
patterns with similarly structured refresh patterns. However, investigation of
those albeit interesting is not provided here due to space limitations. For
example, the efficiency of the scheme could greatly enhanced if the public
key refreshing protocol is run with nodes near the sink, to “break” chains of
fully compromised paths and make symmetric-key refreshing effective even
against this deterministic attack.

5The model can be briefly described as follows [10]: there are N particles
that can be either in compartment A and B. Suppose at time t, there are i
particles in A. The diffusion process behaves as if someone chooses a particle
at random and moves it to another compartment at time t + 1. Therefore,
the transition probability is pij = i

N
(j = i − 1), or N−i

N
(j = i +

1), or 0 (otherwise).

6

consider differs from the Urn of Ehrenfest in that the “self”
transition probability is non-zero (i.e., pii > 0) and also that
the transition probability depends on the rates λ and τ−1.

Therefore, the transition matrix of the subordinated chain
{X̂n}n≥0 is as follows:

P =



s0 ν0

µ1 s1 ν1

.
µi si νi

.
µN−1 sN−1 νN−1

µN sN


where i is the number of correct nodes in the system, µi =

i
Nτ(λ+τ−1) and νi = (N−i)λ

N(λ+τ−1) represent the transitions
resulting from a compromising and a refreshing, respectively,
and si = N−i

Nτ(λ+τ−1) + iλ
N(λ+τ−1) expresses those fruitless

operations. One can easily see that this is a birth-and-death
process in continuous time with reflecting barriers at 0 and
N [10]. The chain {X̂n}n≥0 is irreducible (i.e., every state is
reachable from all other states) and positive recurrent (i.e., the
system does not freeze at some states). It has the following
stationary distribution (the detailed computation is omitted):

π0 =
{

1 +
ν0

µ1
+

ν0ν1

µ1µ2
+ · · ·+ ν0ν1 · · · νN−1

µ1µ2 · · ·µN

}−1

(1)

πi = π0
ν0ν1 · · · νi−1

µ1µ2 · · ·µi
(2)

Note that this is also the stationary distribution of {X(t)}t≥0.
It has the following properties:

• The system can rarely be free either of correct nodes
(X(t) = 0) or of compromised nodes (X(t) = N),
because both π0 and πN vanish with increasing N .

• The most likely state (i.e., arg maxi πi) lies between 0
and N ; it depends on the magnitude of λ and τ−1. The
larger the value of λτ (the ratio between the rate of
refreshing and that of compromising) is, the closer is this
state to N .

These two properties can be easily observed in Fig. 3. It
shows that even if the sink is more efficient than the adversary
(λτ = 1.5, the red curve), there are still approximately 40%
compromised nodes.

Now, we evaluate the probability of having at least one
correct node re-encrypting the data on a routing path of length
L from a source to the adversary. Let a random variable Y be
the number of correct nodes re-encrypting the data and hence

Y =
∑M

m=1 Ωm M ≤ L (3)

where M is the random variable representing the number of
nodes that re-encrypt the data and {Ωm} are i.i.d. Bernoulli
variables indicating the state of each of the M nodes (Ωm =
1 if correct and 0 otherwise). We want to calculate P{Y >
0} = 1−P{Y = 0}, the success probability (in the sense that
GossiCrypt successfully provides confidentiality). To this end,
we make use of the generating function gY (z) of Y , because

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

p

τ = 1

τ = 0.6

τ = 1.5

Fig. 3. Stationary distribution π with N = 100, λ = 1, and τ = 0.6, 1, 1.5.
The y-axis is the probability density corresponding to a certain number of
correct nodes. Since only the product λτ matters, we choose the values of λ
and τ arbitrarily without a dimension.

P{Y = 0} = gY (0) and, by the rule of random sum of i.i.d.
variables [10], gY (z) = gM (gΩ(z)). Therefore,

P{Y = 0} = gM (gΩ(0))
= EM [P{Ω0 = 0}m]

=
L∑

m=1

P{Ω0 = 0}m

(
L

m

)
qm(1− q)L−m (4)

Given the stationary distribution π of {X(t)}t≥0,

P{Ω0 = 0} =
N∑

i=0

P{Π, X(t) = i}

=
N∑

i=0

N − i

N
πi =

N − Eπ(X)
N

(5)

where Π is the event of picking a node within N − i com-
promised ones. We illustrate the success probability P{Y >
0} under different values of L and q in Table I, assuming
N = 100, λ = 1, and τ = 1.5. One might think the case
where P{Y > 0} = 0.8258 (for L = 5 and q = 0.5)
is an unfavorable bet for the legitimate user (because the
adversary is able to decrypt the data with probability 0.1742);
the adversary, however, gains nothing from this. To understand
this point, we refer again to Fig. 1. Since what the adversary
might decrypt (with probability 0.1742) is just a snapshot, the
probability of observing the whole data history goes to zero
(the probability of obtaining three snapshots is already very
low: 0.17423 = 0.0053). Note that we take for granted that the
events of decrypting two different snapshots are independent;
this is guaranteed by the coin flipping procedure even if two
snapshots are transmitted through the same routing path.

We analyzed to this point the system state process and
the per-message protection due to GossiCrypt given the path
length L. In general, L is a random variable. If we knew its
probability distribution P(L), the probability of breaking the

7

q 0.5 0.6 0.7 0.8 0.9
L

5 0.8258 0.8875 0.9303 0.9590 0.9773
6 0.8772 0.9273 0.9591 0.9783 0.9894
7 0.9134 0.9531 0.9760 0.9886 0.9950
8 0.9390 0.9697 0.9859 0.9940 0.9977
9 0.9570 0.9804 0.9917 0.9968 0.9989
10 0.9697 0.9873 0.9951 0.9983 0.9995
11 0.9786 0.9918 0.9871 0.9991 0.9998
12 0.9849 0.9947 0.9983 0.9995 0.9999

TABLE I
SUCCESS PROBABILITY P{Y > 0} UNDER DIFFERENT VALUES OF L

(PATH LENGTH) AND q (COIN FLIP PROBABILITY).

confidentiality of a single measurement (T = t0) from a given
node (∆ = 1/N) would be

Ft0, 1
N

= EL[1− P{Y > 0}] (6)

What we are interested though, as per our specification, is the
confidentiality with respect to any ∆ ≥ 1/N , and T = kt0
for integer k ≥ 1. Clearly, it depends on P(L) that is a
complicated consequence of the relative placement of the sink
and sources, as well as the patterns by which the adversary
compromises nodes and the sink refreshes them. As a result,
we proceed without making an assumption on P (L) and
describe the property of GossiCrypt in an asymptotical sense.

Claim: GossiCrypt guarantees the ∆T -Confidentiality prop-
erty for ∆ ≥ 1/N with probability P (with N being the system
size), and P → 1 when T � t0.

Proof: As it is at least as hard to breach the confi-
dentiality of two or more measurements as that of a single
one, it is clear that Ft0,∆ ≤ Ft0, 1

N
for any ∆ > 1

N . The
strict inequality holds if the events of compromising two or
more measurements are independent. Furthermore, we have
that FT,∆ = (Ft0,∆)k for T = kt0, k > 0. Therefore,
P = 1−FT,∆ ≥ 1−(Ft0, 1

N
)k → 1 if k →∞. In other words,

as k grows, the probability of safeguarding the confidentiality
of ∆ measurements over a period T goes to one. Literally,
if the data history to be captured is sufficiently long, there
is virtually no opportunity for the adversary to succeed in
breaking its confidentiality.

As shown in Fig. 3, it is always preferable to have λτ > 1
(although λτ < 1 can be compensated by aggressively setting
q). This is not hard to achieve because, whereas the adversary
obtains keys via its physical presence, the key refreshing is
performed automatically and remotely. A conservative way to
achieve this is to estimate τmin (the lower bound of τ) and to
set λ > τ−1

min. Estimating τ online can be preferable. We also
note the the convergence of P persists even if λτ < 1 but, of
course, with a lower speed.

B. Energy Expenditure

As we mentioned in Sec. I, applying PKE is an alternative
solution to thwart a parasitic adversary. We will show in this
section that, a sound in theory PKE-based solution is inferior
to GossiCrypt due to the much higher energy expenditure it
incurs.

For a quantitative comparison between PKE and Gos-
siCrypt, we make the following assumptions:

1. The network size N < 216, so node identity Si needs
at most 16 bits.

2. Each message has a length of 20 bytes.
3. GossiCrypt makes use of AES-128 encryption.
4. The PKE can either be RSA-1024 or ECC-160.6

5. The energy expenditure for transmission is 0.21 µJ/bit.
The transmission cost refers to MICA2 nodes, and so are
the computation delays for cryptographic operations, and the
related power dissipation, based on available experimental
results. Note that the fourth assumption strongly favors PKE,
with its 80-bit security compared with the AES 128-bit se-
curity level. The energy costs are taken from [36]. Although
hardware implementations could significantly reduce energy
consumption for all primitives [21], [6], [17], the order of
difference is maintained.

Table II compares GossiCrypt with two variants of PKE in
terms of computation7 and communication complexity.

GossiCrypt PKE-RSA PKE-ECC
Comp. 32.4 µJ/msg 14.1 mJ/msg 53.4 mJ/msg

An increase of 16q bits 1024 bits 320 bits
Comm. per message per hop per message per message

TABLE II
COMPARISON BETWEEN GOSSICRYPT AND PKES.

We have the following observation on Table II: First, the
energy expenditure in computation of GossiCrypt at a source
node is 2 to 3 orders of magnitude lower than the those of
PKEs. Second, the energy expenditure in communication of
GossiCrypt for each node en-route remains lower than those
of PKEs up to 10q−1 (for PKE-ECC) and 54q−1 (for PKE-
RSA) hops (note that q < 1).

It is clear that the communication cost of GossiCrypt is
lower than that of PKE-ECC below 10q−1 hops and that
of PKE-RSA below 54q−1 hops. We assume the scale of
the WSN meets these criteria and we only compare the
computation cost below. Note that assuming 20 bytes message
actually favors PKE-ECC, whose cost would be doubled if, for
example, the message were one byte longer.

The additional computation cost for GossiCrypt compared
with PKE stems from key refreshing; we denote it as crefresh.
Based on the analysis in Sec. V-A, let us assume refresh rate
equal to the adversary compromise rate (i.e., λτ = 1). For
T = kt0, let τ = T/k as per the definition of the parasitic
adversary, or in other words, the adversary compromises one
node per measurement period t0. Then, for a (sub-)network
of N nodes among which the sink picks randomly, each node
will be refreshed on the average once every N measurement

6Rabin PKE, in theory, is more efficient than RSA (though the difference
can be as low as one modular multiplication for low RSA exponent operations)
[29]. However, we are not aware of sensor network software implementations
for Rabin PKE. Moreover, Rabin appears to be costlier than RSA certain
implementations in other platforms [13].

7The computational complexity is measured in different units for
symmetric-key and public-key encryption in [36]. So we need to fix the
message size in order to compare them.

8

periods. The advantage for GossiCrypt per source node is ap-
proximately the ratio of N×cGC+crefresh

N×cPKE
≈ N+1

N
cGC
cPKE

without
public-key encryption (as cGC ≈ crefresh) or ≈ 1

N
crefresh
cPKE

with
public-key encryption (as cGC

cPKE
� 1), where cGC and cPKE are

the computation costs for GossiCrypt and PKEs, respectively,
given in Table II.

As the advantage of GossiCrypt over PKEs is tremendous
without public-key encryption, we only consider the key
refreshing with ECC-based public-key encryption. In this case,
the cost of refreshing is dominated by one ECC encryption,
thus crefresh

cPKE
≈ 1. Therefore, the ratio 1

N
crefresh
cPKE

decreases as
N grows, thus making GossiCrypt increasingly advantageous.
For example, if N = 100, GossiCrypt can be 100 times less
costly then PKE-ECC. For PKE-RSA, crefresh ≈ 3cPKE and
GossiCrypt is still 33 times less costly. However, the very high
communication cost of PKE-RSA is a significant disadvantage
that makes PKE-RSA infeasible.

VI. EXPERIMENT RESULTS

We perform simulations in Matlab. We only simulate the
operations of GossiCrypt without taking the MAC/PHY effects
into account. We assume a grid network where nodes appear
on a

√
N ×

√
N square lattice. The movements8 of both

sink and adversary follow a 2D random walk: they take
identical probability 1/4 in choosing one direction out of four
possibilities. The intervals between two successive events of
moving follow exponential distributions with mean λ−1 and
τ for the sink and the adversary, respectively. To remove the
boundary effect, we project the lattice on a torus, i.e., moving
out of the one side of the lattice leads to an entering on the
opposite side. We illustrate these settings in Fig. 5.

1/4

�
-1

1/4

�
�

A

� ASink Adversary

Fig. 5. Simulation settings.

Since the stochastic process described above can be proved
to be aperiodic and positive recurrent, all the states are
ergodic [10]. Therefore, we can use statistics over time to
characterize the stationary distribution. We run each simulation
for 11000 transitions and truncate the first 1000 points (which
are in transient phase), such that the results are measured
in steady state. Fig. 4 (a) shows the comparison between
four empirical stationary distributions resulting from four
simulation runs and the analytical one obtained in Sec. V-
A, with N = 100, λ = 1, and τ = 1.5. It is clear that the

8We note that the sink may make a virtual movement by simply changing
the target of the key refreshing protocol, but the adversary has to always
physically move to a node to launch its attack.

analytical results describe the stationary regime of the system
very well.

Based on these statistics, we can again verify the success
probability P{Y > 0} by randomly choosing routing paths
between nodes and the adversary. For briefness, we only
illustrate the case with L = 6 in Fig. 4 (b) (showing the
medians and 95% quantiles) and compare the results with
the analytical ones shown in Table I. The comparison shows
that the analytical results are a bit overoptimistic, but the
differences with the experiment results are negligible.

Finally, we verify our claim that GossiCrypt guarantees
the ∆T -Confidentiality property with probability almost one
when T = kt0 is sufficiently long. To this end, we randomly
pick two nodes on the grid and considering one as the source
and the other as the data collector. By applying GossiCrypt to
the shortest path between the two nodes, we can evaluate the
quantity Fkt0, 1

N
for different value of k. As shown in Fig. 6,

this probability converges very fast to zero with an increasing
k, according to both simulation and analytical results. This
corroborates our claim that P = 1−FT,∆ → 1.

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
F

k

Simulation

Analysis

Fig. 6. Analytical and empirical results on Fkt0, 1
N

with N = 100, λ = 1,
and τ = 1.5.

To summarize our results in the analysis of Sec. V-A and the
experiments in this section: we showed that, for any protocol-
or application-specific objective ∆ ≥ 1/N , the confidentiality
of the sensed data can be safeguarded with probability almost
equal to one. Although this seems to require that a sufficiently
high number of measurements (or equivalently long period
T) are of interest, analytic and experimental values show that
even very short sequences (e.g., T = 5t0) of measurements
originating from a single source node can be protected with
probability fast approaching one. This is achieved thanks to
the GossiCrypt en-route encryption, resulting in particularly
robust operation even when approximately 40% of the nodes
are compromised by the adversary.

VII. RELATED WORK AND DISCUSSIONS

Among many works on WSN security, including those
referenced above, confidentiality has received little attention.

9

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

p

Analytical pdf
Empirical pdf 1
Empirical pdf 2
Empirical pdf 3
Empirical pdf 4

0.5 0.6 0.7 0.8 0.9

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
(Y

>
0)

q

Simulation

Analysis

(a) Stationary distributions (b) Successful probability P{Y > 0}

Fig. 4. Comparison between analytical and empirical with N = 100, λ = 1, and τ = 1.5.

Symmetric-key mechanisms for sensor-sink encryption were
proposed [35], and homomorphic encryption was devised
to protect data aggregation [11], but none considered the
compromise of sensor keying material. The vulnerability to
eavesdropping was modeled in [4], without a solution for con-
fidentiality but discussion of non-cryptographic approaches.
Confidentiality recurs in [3], with the need for protection
against node compromise attacks pointed out. Our work, de-
veloped in parallel and independently, addresses this challenge
posed by [3].

Our scheme is somewhat related to onion routing [18], [15],
in the sense that one could view a deterministic version of
GossiCrypt (q = 1) as the dual of onion routing. In the latter,
a successive re-encryption of the message directs it across
the network as dedicated routers successively decapsulate the
message. In our scheme, layers of encryption are accumulated
as the message traverses the network. Of course, onion routing
was developed for a context completely different from WSNs,
and an objective, to protect the sender/receiver anonymity, also
differs from what GossiCrypt is after.

Our overall approach bears some resemblance, beyond
mechanisms, to the overall approach of other security schemes,
albeit with unrelated objectives. In key establishment, [5]
takes a probabilistic approach that leverages on the scale
of the network and the assumption of a realistic, not om-
nipotent, adversary, to propose lightweight solution. From a
different point of view, the use of redundancy as the means
to enhance security has been used in different ways, for
distributed certification authority instantiation [45] or secure
communication [32].

Our assumption on unobtrusive adversarial behavior (see
Sec. III) stems from storing the operating system in ROM
(Sec. II). Re-programmability would enable an adversary to
behave obtrusively, and induce arbitrary deviations [26] by
planting rogue code. A meaningful deviation could be to
manipulate sensor-sink communication paths, so that more
compromised nodes become part of those paths, and data and

key refreshing messages are re-directed towards the adversary.
However, to avoid detection, this deviant behavior should
coexist with the routine node actions. But such sophisticated
rogue code might not fit in the limited sensor memory space,
while the resultant additional traffic may be relatively easy to
detect, given the low channel capacity. Finally, one possibility
to thwart such an attacker is to require that each node performs
a remote software-based attestation (SBA) [38], [39]. Research
in this direction is promising yet recent, while the WSN en-
vironment is challenging (e.g., network delays); experimental
results that verify the effectiveness of SBA would be welcome.

The impact of active adversaries is discussed next. After
compromising a key, they can impersonate Si, and invoke
a fake key refreshing.9 The adversary could then establish a
new shared key with the sink, while preventing the reception
of messages from the actual Si. However, once the actual
refreshing occurs, Si operates with a different key from its
impostor. The unobtrusive adversary cannot prevent Si from
launching a refresh and cannot upload its own “new” key to
Si. Consequently, Θ will detect the inconsistency at a later
interaction with Si.

An active adversary may launch a DoS attack (e.g., jamming
or packet dropping) to prevent key refreshing. Note that the
adversary cannot predict the randomly triggered refresh event,
and key refresh messages are disguised as data measurements.
As a result, the adversary would have to attack randomly or
consistently, for all packets. If randomly with low probability,
the attack would be ineffective. Otherwise, the sink, knowing
both the data report rate and the key refreshing rate, would be
able to perform rate-based Bayesian estimations [9] and detect
the attack.

As a follow-up work, we intend to consider specific in-
stantiations of WSNs, e.g., network sizes and topologies, data

9Public key cryptography (e.g., digital signatures generated by a source
node Si) is not advantageous: the private key of Si can be compromised as
well.

10

extraction10 and key refreshing methods, and value ranges
for other system characteristics such as δ, T , and ∆, and τ
and λ. Extending our work in this way, through analytical
and experimental means, would allow us to investigate a
number of interesting questions. For example, postulate fine-
grained claims conditional on specific networks, revealing
design trade-offs due to the relative roles of ∆ and T . Or,
identify the right “mix” of symmetric- and public-key based
key refreshing techniques, as a function of the adversary
presence, to evaluate the trade-off of effectiveness for cost.

VIII. CONCLUSION

As security becomes an important requirement for WSN,
the salient characteristics of WSNs clue the more relevant
threats and types of exploit to thwart with practical defense
mechanisms. With this consideration in mind, we identify here
a novel threat, a parasitic adversary, targeting exactly the most
valuable asset of a WSN, its measurements. The parasitic
adversary is a practical and realistic threat because of (i) its
well-aimed exploit, unauthorized access to WSN data, (ii) its
well-chosen methods, targeting at the weakest system point,
the low physical sensor node protection, and (iii) its resource
constraints and “low-profile” operation.

The second and main contribution of this paper is Gos-
siCrypt, a scheme to ensure WSN data confidentiality. Gos-
siCrypt’s two building blocks are a probabilistic en route
encryption of the data towards the sink and a key refreshing
mechanism, both leveraging on the scale of WSNs. The former
relies on very simple key management assumptions, it is
simple in operation. The latter reverses the impact of the
physical compromise of sensor nodes.

Our evaluation shows that GossiCrypt can prevent the
breach of WSN confidentiality in a wide range of settings.
Even though the adversary could obtain solitary or sparse mea-
surements, our analysis and simulations show that GossiCrypt
prevents the compromise of a meaningful set of measurements
over a period of time with probability going to one. The
most intriguing feature of GossiCrypt lies in its ability of
defending the WSN data confidentiality with simple and low-
cost mechanisms. We believe that such approaches that lever-
age on the WSN characteristics, rather than imitating iron-
clad approaches from other distributed computing paradigms,
can be effective in addressing security challenges for wireless
sensor networks.

REFERENCES

[1] ISO, Information Technology - Security Techniques - Key Management
- Part 2: Mechanisms Using Symmetric Techniques. In ISO/IEC 11770-
2, International Standard, 1996.

[2] ISO, Information Technology - Security Techniques - Key Management
- Part 3: Mechanisms Using Asymmetric Techniques. In ISO/IEC 11770-
3, International Standard, 1999.

[3] M. Anand, E. Cronin, M. Sherr, M. Blaze, Z. Ives, and I. Lee. Sensor
Network Security: More Interesting Than You Think. In Proc. of the
1st USENIX HotSec, 2006.

10For example, in data centric sensor networks where nodes are used as in-
network storage [40], we can apply GossiCryptE to paths between sources
and storages.

[4] M. Anand, Z. Ives, and I. Lee. Quantifying Eavesdropping Vulnerability
in Sensor Networks. In Proc. of the 2nd International VLDB Workshop
on Data Management for Sensor Networks (DMSN), 2005.

[5] R. Anderson, H. Chan, and A. Perrig. Key infection: Smart trust for
smart dust. In Proc. of the 12th IEEE ICNP, 2004.

[6] G. Bertoni, L. Breveglieri, and M. Venturi. ECC Hardware Coprocessors
for 8-bit Systems and Power Consumption Considerations. In Proc. of
the 3rd IEEE ITNG, 2006.

[7] T. Bonald. The Erlang Model with Non-Poisson Call Arrivals. ACM
SIGMETRICS Perform. Eval. Rev., 34(1), 2006.

[8] S. Brands and D. Chaum. Distance-Bounding Protocols. Springer LNCS
839, pages 344–359, 1994.

[9] P. Breḿaud. Point Processes and Queues: Martingale Dynamics.
Springer-Verlag, New York, 1981.

[10] P. Breḿaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, New York, 1999.

[11] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient Aggregation of
Encrypted Data in Wireless Sensor Networks . In Proc. of the 2nd
ACM/IEEE MobiQuitous, 2005.

[12] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan. On the Distribution
and Revocation of Cryptographic Keys in Sensor Networks. IEEE Trans.
on Dependable and Secure Computing, 2(3):233–247, 2005.

[13] Crypto++ library benchmarks, http://gd.tuwien.ac.at/privacy/crypto/
libs/cryptlib/benchmarks.html.

[14] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic
Algorithms for Replicated Database Maintenance. In Proc. of the 6th
ACM PODC, 1987.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
Generation Onion Router. In Proc. of the 13th USENIX Security, 2004.

[16] P. Ehrenfest and T. Ehrenfest. The Conceptual Foundations of the
Statistical Approach in Mechanics. Dover Publications, New York,
reprint edition, 1990.

[17] G. Gaubatz, J.-P. Kaps, and B. Sunar. Public key cryptography in sensor
networks – Revisited. In Proc. of the 1st ESAS, 2004.

[18] D. Goldschlag, M. Reedy, and P. Syversony. Onion Routing for Anony-
mous and Private Internet Connections. Commun. ACM, 42(2):39–41,
1999.

[19] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S.C. Shantz. Sizzle: A Standards-Based End-to-End Security
Architecture for the Embedded Internet. Elsevier Pervasive and Mobile
Computing, 1(4):425–445, 2005.

[20] Z.J. Haas, J.Y. Halpern, and L. Li. Gossip-based Ad Hoc Routing. In
Proc. of the 21st IEEE INFOCOM, 2002.

[21] P. Hamalainen, T. Alho, M. Hamalainen, and T. Hamalainen. Design and
Implementation of Low-area and Low-power AES Encryption Hardware
Core. In Proc. of the 9th EUROMICRO DSD, 2006.

[22] C. Hartung, J. Balasalle, and R. Han. Node Compromise in Sensor
Networks: The Need for Secure Systems. Technical Report CU-CS-
990-05, University of Colorado at Boulder, 2005.

[23] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin.
Intelligent fluid infrastructure for embedded networks. In Proc. of the
ACM MobiSys’04, 2004.

[24] C. Karlof, N. Sastry, and D. Wagner. TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks. In Proc. of the 2nd ACM
SenSys, 2004.

[25] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures. Elsevier Ad Hoc Networks, 1(2-3):293–
315, 2003.

[26] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Trans. Programming Languages and Systems, 4(3):382–401, 1982.

[27] J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser, and J.-P. Hubaux.
MobiRoute: Routing towards a Mobile Sink for Improving Lifetime in
Sensor Networks. In Proc. of the 2nd IEEE/ACM DCOSS, 2006.

[28] J.M. McCune, E. Shi, A. Perrig, and M.K. Reiter. Detection of Denial-
Of-Message Attacks on Sensor Network Broadcasts. In Proc. of IEEE
Symposium on Security and Privacy, 2005.

[29] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[30] J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil Attack in Sensor
Networks: Analysis and Defenses. In Proc. of the 3rd IPSN, 2004.

[31] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.
In Proc. of the 10th ACM PODC, 1991.

[32] P. Papadimitratos and Z.J. Haas. Secure Data Communication in Mobile
Ad Hoc Networks. IEEE JSAC, Special Issue on Security in Wireless
Ad Hoc Networks, 24(2):343–356, 2006.

11

[33] B. Parno, A. Perrig, and V. Gligor. Distributed Detection of Node
Replication Attacks in Sensor Networks. In Proc. of IEEE Symposium
on Security and Privacy, 2005.

[34] A. Perrig, J. Stankovic, and D. Wagner. Security in Wireless Sensor
Networks. Commun. ACM, 47(6):53–57, 2004.

[35] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Se-
curity Protocols for Sensor Networks. ACM/Kluwer Wireless Networks,
8(5):521–534, 2002.

[36] K. Piotrowski, P. Langendoerfer, and S. Peter. How Public Key
Cryptography Influences Wireless Sensor Node Lifetime. In Proc. of
the 4th ACM SASN, 2006.

[37] R. Poovendran and L. Lazos. A Graph Theoretic Framework for Prevent-
ing the Wormhole Attack in Wireless Ad Hoc Networks. ACM/Kluwer
Wireless Networks, 13(1):27–59, 2005.

[38] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Distributed
Detection of Node Replication Attacks in Sensor Networks. In Proc. of
IEEE Symposium on Security and Privacy, 2004.

[39] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote Software-
based Attestation for Wireless Sensors. In Proc. of the 2nd ESAS, 2005.

[40] M. Shao, S. Zhu, W. Zhang, and G. Cao. pDCS: Security and Privacy
Support for Data-Centric Sensor Networks. In Proc. of the the 26th
IEEE INFOCOM, 2007.

[41] Y. Tirta, Z. Li, Y. Lu, and S. Bagchi. Efficient Collection of Sensor
Data in Remote Fields Using Mobile Collectors. In Proc. of the 13th
IEEE ICCCN, 2004.

[42] R. Watro, D. Kong. S. Cuti, C. Gardiner, C. Lynn1, and P. Kruus.
TinyPK: Securing Sensor Networks with Public Key Technology. In
Proc. of the 2nd ACM SASN, 2004.

[43] A. Wood and J. Stankovic. Denial of Service in Sensor Networks. IEEE
Computer, 35(10):54–62, 2003.

[44] W. Zhang, H. Song, S. Zhu, and G. Cao. Least Privilege and Privilege
Deprivation: Towards Tolerating Mobile Sink Compromises in Wireless
Sensor Networks. In Proc. of the 6th ACM MobiHoc, 2005.

[45] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A Secure
Distributed On-line Certification Authority. ACM Trans. on Computer
Systems, 20(4):329–368, 2002.

