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Abstract

This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh
topologies in the throughput model. The problem is a generalization of the edge-disjoint paths problem and
is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In
the offline setting, we give the first constant-factor approximation algorithm for trees, and an

Oððlog log nÞ2Þ-factor approximation algorithm for meshes. In the online setting, we give the first
polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-
competitive algorithm is possible on general network topologies (Lower bounds for on-line graph
problems with application to on-line circuits and optical routing, in: Proceedings of the 28th ACM
Symposium on Theory of Computing, 1996, pp. 531–540) and there exists a polylogarithmic lower bound
on the competitive ratio of any online algorithm on tree topologies (Making commitments in the face of
uncertainity: how to pick a winner almost every time, in: Proceedings of the 28th Annual ACM Symposium
on Theory of Computing, 1996, pp. 519–530). We prove the same lower bound for meshes.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Multicast routing and admission control are the basic operations required by future high-speed
communication networks that use bandwidth reservation for quality-of-service guarantees. A
number of applications from collective communication to data distribution will be based on
efficient multicast communication.
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Formally, the multicast routing and admission control problem with M multicasts consists of an
n-node graph G and a sequence or set of requests ðt; siÞ; where the request node t and the source
node si are nodes in G and iAf1; 2;y;Mg: Multicast i consists of all requests with source si: For
each request the algorithm has to decide whether to accept or reject it. If request ðt; siÞ is accepted,
the algorithm has to connect node t to the multicast tree connecting the already accepted requests
of multicast i with source si: In the unit-capacity setting, each link can be assigned to only one
multicast tree: the trees spanning different multicasts must be edge-disjoint. The objective function
is to maximize the total number of accepted requests. In the online version the requests form a
sequence and when processing a request, the algorithm must decide without knowledge of future
requests. In the offline version the requests form a set, which is given before the algorithm decides
which requests to accept.

Online multicast routing was recently studied under the small bandwidth assumption that the
link bandwidth required by every connection is at most a fraction logarithmic in the size of the
network. Awerbuch and Singh [AS97] gave an Oðlog nðlog n þ log logMÞlogMÞ-competitive
algorithm for the case in which all the requests to a given multicast arrive before the next multicast
is created. Goel et al. [GHP98] extended the study to the case in which requests to different
multicasts can be interleaved.

With the sizes of networks growing faster than the link capacity, the small bandwidth request
assumption is not necessarily a realistic assumption. There are many applications, for instance a
multimedia server managed by a supercomputer, in which large amount of data must be
transferred in a local network where a single communication path consumes a large fraction of the
available bandwidth on a link [AGLR94]. Thus, the situation where the bandwidth required by a
connection is a large fraction of the link capacity needs to be studied as well for the multicast
routing problem. In this paper we take a first step into this direction by assuming that every
connection uses the total bandwidth on a link. We call this the unit-capacity case.

This paper studies both the offline and the online version of the multicast routing and
admission control problem in unit-capacity graphs. The offline problem models the case of arrival
of a batch of connection requests to several multicasts. It is also motivated by all those situations
where the answer to the user can be delayed for a limited time while other requests are collected.

We present algorithms for tree and mesh topologies, which are at the basis of many
communication networks. Trees are important practical network topologies [ABFR94,AGLR94,-
RU94,MKR95], they are at the basis of topologies for communication networks such as trees of
rings, often considered as interconnection of SONET rings optical networks [RU94,MKR95], or
topologies for connecting high-performance multicomputers systems as trees of meshes
[AGLR94] and fat trees. The multicast routing problem on trees, when all the multicast groups
use the same spanning tree, is then a basic problem to solve in this context. There has also been an
extensive study of the unicast problem on these network topologies motivated by virtual circuit
assignment and optical communication. Meshes topologies are often the basis of the
interconnecting topology of high-performance multiprocessor systems. They are also relevant
as a first approximation of nearly planar communication networks [KT95]. The offline problem
on meshes arises also in FPGA-routing, where various subsets of components have to be
connected by trees such that the trees of different subsets do not overlap and the underlying
routing fabric is a mesh. The unicast problem for meshes was recently studied in both the offline
and the online version (see e.g. [AGLR94,KT95,Rab96,LMSPR98]).
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Note that the multicast routing problem in unit-capacity graphs reduces to the edge-disjoint

paths problem if only one request is presented for each multicast, also called the unicast setting.
Multicast routing is also an interesting extension of the maximum coverage problem [Hoc97].

1.1. Previous work on unit-capacity networks

All previous work on unit-capacity networks studied unicast routing. Unlike multicast routing,
the offline unicast problem is still polynomial on trees [GVY93], but it is NP-hard on meshes.
Kleinberg and Tardos [KT95] proposed the first constant approximation algorithm for edge-
disjoint paths on meshes and on a class of planar graphs called ‘‘densely embedded, nearly
Eulerian graphs’’. They formulated the escape problem as an interesting subproblem and gave a
constant-factor approximation for the escape problem in the unicast setting. A straightforward
extension of their approach leads to a Oðlog nÞ-factor approximation for the escape problem for

multicasts. We use instead a recursive approach that achieves a Oððlog log nÞ2Þ-factor
approximation.

For the online problem no algorithm, not even a randomized one, has a polylogarithmic
competitive ratio for any network topology [BFL96] for the unicast problem. Deterministic
algorithms for the unicast problem have a very high lower bound even for line networks [AAP93].
(This clearly extends also to the multicast problem.) Therefore, in the unicast setting restricted
graph topologies like trees, meshes, and densely embedded, nearly Eulerian graphs [AB-
FR94,AGLR94,KT95,LMSPR98]) were studied before and algorithms with logarithmic
competitive ratio were proposed for all these network topologies.

1.2. Our offline results

The problem on trees contains the MAX-3SAT problem and is thus MAX-SNP hard [Ali97].
We present a polynomial time approximation algorithm for unit-capacity trees that achieves an
approximation ratio of 18. The algorithm presents an interesting version of a greedy strategy.
Each step schedules the ‘‘densest residual subtree’’ for a multicast and discards the overlapping
subtrees of different multicasts already selected. The densest residual subtree of a multicast is the
subtree maximizing the ratio between a value related to the net increase of the objective function
after the selection, and a weight associated with the subtree itself. The algorithm can be easily
implemented using a dynamic programming approach. To the best of our knowledge no
approximation algorithm was known for this problem before.

We also present the first approximation algorithm on unit-capacity meshes. Our polynomial

time algorithm obtains an approximation ratio of Oððlog log nÞ2Þ: It formulates the multicast
routing problem as a fractional packing problem [GK98,PST95,You95] which is solved using
duality-based algorithms. The fractional solution is then rounded probabilistically, leading to a
potentially infeasible set of multicast trees, which are used to guide the construction of an integral
solution.
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1.3. Our online results

We show that in the multicast setting polylogarithmic-competitive randomized algorithms are
possible for restricted topologies: We present an Oðlog nðlog n þ log logMÞlogMÞ-competitive

randomized multicast algorithm for trees and an Oðlog2 nðlog n þ log logMÞlogMÞ-competitive
randomized multicast algorithm for meshes. We also show a randomized lower bound of
Oððlog n logMÞ=dÞ for a connected graph with minimum degree d: This gives a lower bound of
Oðlog n logMÞ for meshes. The same lower bound for trees follows from [AAFL96]. No
competitive multicast algorithms were known for these topologies before. There are various
difficulties that multicast algorithms face over unicast algorithms. One of them is that latter
multicasts might be more profitable than earlier ones. Thus, our algorithms accept each multicast
that pass an initial screening for ‘‘routability’’ with roughly equal probability.

Section 2 of this paper presents the constant approximation algorithm on trees, Section 3
contains the online algorithm for trees, Section 4 gives the offline algorithm on meshes, Section 5
presents the online algorithm on meshes.

2. The offline algorithm for trees

We present a constant-factor approximation algorithm on trees. To denote the ith multicast
whose request node set is V we use the pair ði;VÞ: A submulticast ði;V 0Þ of ði;VÞ is a multicast
with source si and request node set V 0DV : Our approach is to use a greedy algorithm that
maintains an initially empty set S of (potentially) accepted submulticasts and assigns a weight and
a residual profit to each submulticast. The algorithm repeatedly adds to S the submulticast that
maximizes the ratio of its residual profit to its weight. Since the algorithm is offline, it can first
accept a submulticast and then later add or subtract from it. We indicate this by saying that ði;VÞ
is added to or removed from the current set S of submulticasts. Two submulticasts ði;VÞ and
ði0;V 0Þ overlap if they share an edge. We only add ði;VÞ to S if its profit is significantly larger than
the profit lost by submulticasts which overlap with ði;VÞ:

We root the tree T at an arbitrary leaf. This defines an ancestor-descendant relation on the
nodes of the tree. Let Tði;VÞ be the tree connecting the nodes of V to the source of i: The highest
node of Tði;VÞ is called the root rootði;VÞ of ði;VÞ: Note that the root does not have to belong to
V : We say r is a subroot of ði;VÞ if r is the root of one of the submulticasts of ði;VÞ: For each
subroot r we say ði;V 0Þ is the maximum submulticast maxði; rÞ of ði;VÞ if ði;V 0Þ is the submulticast
of ði;VÞ with root r that has the maximum number of requests.

Next we define a weight for each multicast such that multicasts ‘‘higher’’ in the tree have higher
weight and hence are added to S ‘‘later’’, except if they are very profitable. Given a submulticast
ði;VÞ with root r and a multicast ði0;V 0Þ with i0ai; let Rði0; i; rÞ be the set of subroots r 0 of ði0;V 0Þ
such that r 0 is a true descendant of r and maxði0; r 0Þ overlaps with maxði; rÞ: For each multicast
ði;VÞ and each possible root position r; we define the weight wði; rÞ to be

wði; rÞ ¼ 1 þ
X
i0ai

max
r 0ARði0;i;rÞ

wði0; r 0Þ:
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For all multicasts ði;VÞ and ði0;V 0Þ with iai0 and all subroots r;maxði; rÞ and Rði0; i; rÞ can be
computed in polynomial time. Thus, wði; rÞ can be computed in polynomial time by a bottom-up
traversal of the tree.

The profit pði;VÞ of a submulticast ði;VÞ is the number of requests in ði;VÞ: For iai0 the
overlapping profit pði;V ; i0;V 0Þ of submulticast ði;VÞ and ði0;V 0Þ is defined to be the profit of
the maximum submulticast of ði0;V 0Þ whose requests cannot be accepted if ði;VÞ is accepted, i.e.,
the number of requests of ði0;V 0Þ that cannot be accepted if ði;VÞ is accepted. For i ¼ i0 the
overlapping profit pði;V ; i0;V 0Þ of submulticast ði;VÞ and ði0;V 0Þ is defined to be the profit of
ði0;V 0-VÞ: Note that in general pði;V ; i0;V 0Þapði0;V 0; i;VÞ:

Let Oði;VÞ be the set of submulticasts overlapping with ði;VÞ: For a submulticast ði;VÞ the
residual profit

presði;VÞ ¼ pði;VÞ 	 a
X

ði0;V 0ÞAS-Oði;VÞ
pði;V ; i0;V 0Þ;

where a41 is a constant to be chosen later. Let the ratio rði;VÞ of a submulticast be defined to be
presði;VÞ=wði; rÞ; where r ¼ rootði;VÞ: Now the greedy algorithm works as follows:

(1) S ¼ |;
(2) for each submulticast ði;VÞ: the residual profit presði;VÞ ¼ pði;VÞ;
(3) while there exists a submulticast not in S with positive residual profit:
(4) Let ði;VÞ be a submulticast with maximum rði;VÞ of all submulticasts not in S:
(5) Let Sdel ¼ fði0;V 00Þ; ði0;V 00Þ is the maximum submulticast of ði0;V 0ÞAS; whose requests cannot

be accepted together with ði;VÞg:
(6) S ¼ S,ði;VÞ\Sdel:
(7) Update the residual profit for each submulticast.

Let the profit pðSÞ of set S of submulticasts be
P

ði;VÞAS pði;VÞ: If ði;VÞ is added to S; thenX
ði0;V 0ÞAS-Oði;VÞ

pði;V ; i0;V 0Þ ¼ pðSdelÞ:

Thus, the residual profit of a submulticast compares its profit with the profit lost from S if the
submulticast is added to S: We first show that the algorithm terminates.

Lemma 1. The algorithm terminates after at most nM iterations.

Proof. Whenever a multicast ði;VÞ is added to S and a set Sdel of submulticasts is deleted,
presðiÞ40: It follows that pði;VÞ4apðSdelÞ: Thus, pðSÞ increases in each iteration by at least 1. The
maximum value it can assume is nM: &

We prove in the next subsection that this algorithm gives a constant factor approximation of
the optimum solution. In the following subsection we show how to implement each iteration in
polynomial time.
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2.1. Proof of the constant approximation ratio

To prove that this algorithm gives a constant factor approximation we distinguish three types
of overlaps: If Tði;VÞ contains an edge incident to the rootði0;V 0Þ then ði;VÞ is ancestor-touching
(a-touching) ði0;V 0Þ: Note that either rootði0;V 0Þ ¼ rootði;VÞ or rootði;VÞ is an ancestor of
rootði0;V 0Þ: If rootði;VÞ is a true descendant of rootði0;V 0Þ and Tði;VÞDTði0;V 0Þ then ði;VÞ is
internal to ði0;V 0Þ: Otherwise, i.e., if ði;VÞ and ði0;V 0Þ overlap, rootði;VÞ is a true descendant of
rootði0;V 0Þ; but Tði;VÞD/ Tði0;V 0Þ then ði;VÞ is descendant-touching (d-touching) ði0;V 0Þ:

The weight of a multicast was defined such that the following lemma holds.

Lemma 2. Let S be a set of nonoverlapping submulticasts that are all internal or d-touching to a
submulticast ði;VÞ such that S contains at most one submulticast for each multicast i0: ThenP

ði0;V 0ÞAS wði0; rootði0;V 0ÞÞpwði; rootði;VÞÞ:

Proof. Let r ¼ rootði;VÞ and let ði0;V 0ÞAS be a submulticast with root r 0: Note that r 0 is a true
descendant of r: Furthermore ði0;V 0Þ and ði;VÞ overlap, thus maxði; rÞ and maxði0; r 0Þ overlap.
Hence, r 0ARði0; i; rÞ and wði0; r 0Þpmaxr 00ARði0;i;rÞwði0; r 00Þ:

Thus,X
ði0;V 0ÞAS

wði0; rootði0;V 0ÞÞp
X

ði0;V 0ÞAS

max
r 00ARði0;i;rÞ

wði0; r 00Þ

p
X
i0ai

max
r 00ARði0;i;rÞ

wði0; r 00Þ

owði; rootði;VÞÞ &

The following lemma is used repeatedly.

Lemma 3. Let S be a set of non-overlapping submulticasts.
Then for each submulticast ði;VÞ;

P
ði0;V 0ÞAS a-touches ði;VÞ pði0;V 0; i;VÞp2pði;VÞ:

Proof. Let S0 be the set of submulticasts of S that a-touch ði;VÞ: Let r be the root and let s be the
source of ði;VÞ: Furthermore let e be the edge on the path from s to r that is incident to r: Let
ði�;V�Þ be the submulticast in S0 whose multicast tree contains e if such a submulticast exists. For
each submulticast ði0;V 0Þaði�;V�Þ in S0 let childrenði0;V 0Þ be the children v of r such that ðv; rÞ
belongs to Tði0;V 0Þ: Then the overlapping profit pði0;V 0; i;VÞ is at most the profit of ði;VÞ in the
subtrees of childrenði0;V 0Þ: Since the submulticasts in S0 are non-overlapping, the set
childrenði0;V 0Þ and childrenði00;V 00Þ are disjoint for any pair ði0;V 0Þ; ði00;V 00ÞAS0: Thus,P

ði0;V 0ÞAS0;ði0;V 0Þaði�;V�Þ pði0;V 0; i;VÞppði;VÞ:
Since pði�;V�; i;VÞppði;VÞ; the lemma follows. &

Next we show that the above algorithm gives a constant approximation of the optimum result:
Let Sopt be the set of submulticasts chosen by the optimum algorithm and let Sf be the final value

of S: Note that every submulticast in Sopt overlaps with a submulticast in Sf : We partition Sopt as
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follows: Let S2 be the set of submulticasts in Sopt that are d-touching or internal to a submulticast

of Sf : Let S1 be the set of submulticasts in Sopt that are a-touching to a submulticast of Sf ; but are

not internal or d-touching to any submulticast of Sf :

Lemma 4. pðS1Þp2apðSfÞ:

Proof. Let ði0;V 0ÞAS1: Let S0
f be the set of submulticasts of Sf that are a-touched by ði0;V 0Þ: Note

that S0
f ¼ Oði0;V 0Þ-Sf and that the residual profit of ði0;V 0Þ is not positive at termination.

Thus,

pði0;V 0Þpa
X

ði;VÞASf-Oði0;V 0Þ
pði0;V 0; i;VÞ:

Thus, by Lemma 3,

pðS1Þ ¼
X

ði0;V 0ÞAS1

pði0;V 0Þpa
X

ði0;V 0ÞAS1

X
ði;VÞASf-Oði0;V 0Þ

pði0;V 0; i;VÞ

¼ a
X

ði;VÞASf ði0;V 0ÞAS1

X
a-touchesði;VÞ

pði0;V 0; i;VÞpa
X

ði;VÞASf

2pði;VÞp2apðSfÞ: &

Next we handle submulticasts in S2:

Lemma 5. pðS2Þpð10 þ 2aÞpðSfÞ for aX2:

Proof. The lemma follows from the following claim which we show by induction on the number
of iterations j: let Sj be the set S after iteration j: Let Dj be the subset of Sopt consisting of all

submulticasts that d-touch or are internal to a submulticast in
S

kpj Sk: ThenX
ði0;V 0ÞADj

pði0;V 0Þp10
X

ði;VÞASj

pði;VÞ þ a
X

ði;VÞASj

X
ði0;V 0ÞADj :ði0;V 0Þ a-touches ði;VÞ

pði0;V 0; i;VÞ:

The claim holds before iteration 1 since S0 and D0 are empty. Assume the claim holds before
iteration j: Let ði;VÞ be added to S in iteration j and let Sdel be deleted. Let D ¼ Dj\Dj	1: Then the

left side of the inequality increases by
P

ði0;V 0ÞAD pði0;V 0Þ: We need to show that the right side

increases by at least so much.
Each ði00;V 00ÞASj	1 is partitioned into two submulticasts ði00;V 00

1 Þ and ði00;V 00
2 Þ with ði00;V 00

1 ÞASj

and ði00;V 00
2 ÞASdel: Note that pði0;V 0; i00;V 00Þppði0;V 0; i00;V 00

1 Þ þ pði0;V 0; i00;V 00
2 Þ: By Lemma 3X

ði00;V 00
2
ÞASdel

X
ði0;V 0ÞADi	1:ði0;V 0Þ a-touches ði00;V 00

2
Þ

pði0;V 0; i00;V 00
2 Þp2pðSdelÞ:

Thus, X
ði00;V 00ÞASj	1

X
ði0;V 0ÞADi	1:ði0;V 0Þ a-touches ði00;V 00Þ

pði0;V 0; i00;V 00Þ

p
X

ði00;V 00
1
ÞASj

X
ði0;V 0ÞADi	1:ði0;V 0Þ a-touches ði00;V 00

1
Þ
pði0;V 0; i00;V 00

1 Þ þ 2pðSdelÞ:
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Thus, the total decrease of the right side by removing Sdel from S is at most ð10 þ 2aÞpðSdelÞ: It
follows that the right side increases by at least

10pði;VÞ þ a
X

ði00;V 00ÞASj

X
ði0;V 0ÞAD:ði0;V 0Þ a-touches ði00;V 00Þ

pði0;V 0; i00;V 00Þ 	 ð10 þ 2aÞpðSdelÞ:

We know that pði;VÞXapðSdelÞ; which implies that 7pði;VÞXð10 þ 2aÞpðSdelÞ for aX2: We
show below thatX

ði0;V 0ÞAD

pði0;V 0Þp3pði;VÞ þ a
X

ði00;V 00ÞASj

X
ði0;V 0ÞAD:ði0;V 0Þ a-touches ði00;V 00Þ

pði0;V 0; i00;V 00Þ: ð�Þ

Thus, the inductive claim continues to hold.
To show (�) we consider two cases. Let A ¼ D-Sdel: Let B be the rest of D:
Bounding A: As shown above, apðSdelÞppði;VÞ: Thus, pðAÞppði;VÞ=appði;VÞ:
Bounding B: Consider a multicasts ði0;V 0Þ in B: When ði;VÞ is added, ði0;V 0Þ does not belong to

Sj	1 and it is not selected by the algorithm. Thus, the ratio rði0;V 0Þ is at most the ratio rði;VÞ:
Note that each multicast has at most one submulticast in B: Thus, using Lemma 2 it follows thatX

ði0;V 0ÞAB

presði0;V 0Þ ¼
X

ði0;V 0ÞAB

rði0;V 0Þwði0; rootði0;V 0ÞÞ

prði;VÞ
X

ði0;V 0ÞAB

wði0; rootði0;V 0ÞÞprði;VÞwði; rootði;VÞÞ ¼ presði;VÞ:

Thus,

X
ði0;V 0ÞAB

pði0;V 0Þ 	 a
X

ði00;V 00ÞASj	1-Oði0;V 0Þ
pði0;V 0; i00;V 00Þ

0
@

1
Appði;VÞ 	 apðSdelÞ:

By definition no submulticast ði0;V 0Þ in B d-touches or is internal to a submulticast in Sj	1: Thus,

all submulticasts in Sj	1-Oði0;V 0Þ are a-touched by ði0;V 0Þ: Using Lemma 3 for the second

inequality in the same way as above shows that

pðBÞppði;VÞ 	 apðSdelÞ þ a
X

ði00;V 00ÞASj	1

X
ði0;V 0ÞAB:ði0;V 0ÞÞ a-touches ði00;V 00Þ

pði0;V 0; i00;V 00Þ

ppði;VÞ þ apðSdelÞ þ a
X

ði00;V 00
1
ÞASj

X
ði0;V 0ÞAB:ði0;V 0Þ a-touches ði00;V 00

1
Þ
pði0;V 0; i00;V 00

1 Þ

p2pði;VÞ þ a
X

ði00;V 00
1
ÞASj

X
ði0;V 0ÞAB:ði0;V 0Þ a-touches ði00;V 00

1
Þ
pði0;V 0; i00;V 00

1 Þ:

Since pðDÞ ¼ pðAÞ þ pðBÞ; this shows (�). &

It follows that

pðSoptÞ ¼ pðS1Þ þ pðS2Þpð4aþ 10ÞpðSÞ;

for aX2: Choosing a ¼ 2 gives an approximation factor of 18.
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2.2. The polynomial time implementation of the algorithm

We are left with showing how to implement each iteration in polynomial time. Given a set S;
the algorithm must compute at each step a submulticast of maximum ratio rði;VÞ: Note that it
suffices to compute for each multicast i and each possible root position r� the submulticast
bestði; r�Þ with maximum residual profit. The desired submulticast is the one that maximizes over
all multicasts i and all possible root positions r� of i the ratio

presðbestði; r�ÞÞ
wði; r�Þ :

Let Tv be the subtree of T rooted at node v:
We describe a polynomial time procedure based on dynamic programming that finds for each

multicast i and for each possible root position r� a submulticast bestði; r�Þ with maximum residual
profit. To be precise it suffices to consider all submulticasts of maxði; r�Þ:

Let ði;VÞ be the submulticast of i that currently belongs to S (V ¼ | if no such submulticast
exists.) To find bestði; r�Þ root the tree T at the source s of maxði; r�Þ: (This rooting is completely
independent of the rooting in the previous section.) We first compute a cost costðeÞ for each edge
in the tree. Then we construct a binary tree T 0 from the original tree for use in a dynamic

program. Next, we use the edge costs to compute two cost functions cost0v and cost1v for each

vertex vAT 0 using bottom-up dynamic programming. Finally, cost1s can be used to determine

bestði; r�Þ:
Computing the edge costs: Use a depth-first traversal of the tree starting at s: When traversing

edge e; a cost is assigned to e: The cost of edge e will be the profit that is lost by S when this edge is
assigned to multicast i and thus is no longer available for submulticasts in S; ignoring the profit
that S already lost on the edges along the path from e to s:

Formally, we have the following definition: If e belongs to ði;VÞAS; or e does not belong to any
submulticast in S; or e does not belong to the multicast tree of maxði; r�Þ; costðeÞ is 0. Otherwise, e

belongs to the multicast tree of maxði; r�Þ and to a submulticast ði0;V 0Þ of S with i0ai: Let
e ¼ ðu; vÞ and let u be the parent of v: Let pði0;V 0; s; xÞ be the number of requests of ði0;V 0Þ that use
an edge on the path from s to x: Then costðeÞ ¼ pði0;V 0; s; vÞ 	 pði0;V 0; s; uÞ:

Obviously all edge costs can be computed in polynomial time.
To illustrate the edge costs, assume for a moment that S contains only one submulticast ði0;V 0Þ:

Let s0 be the source of i0: Then the only edge costs that have non-zero value are the ones on the
path from s0 to s or incident to a node on the path from s0 to s: Call these edge costs the edge costs

for ði0;V 0Þ: If S consists of more than one submulticast ðij;VjÞ; then the edge costs are simply

assigned considering separately each ðij;VjÞ: Thus, a multicast i0ai of S with an edge of positive

cost incident to v has its source in the subtree rooted at v:
Constructing the binary tree T 0: For the bottom-up dynamic programming approach we need to

transform the tree into a binary tree T 0 by introducing additional nodes and edges. The cost of
each additional edge is 0. Let v be a node in the original tree with dX1 children. We call an edge
incident to v unused if it does not belong to a submulticast of S or has costðeÞ ¼ 0: All the other
edges incident to v have positive cost and belong to a submulticast of S: Recall that a multicast
i0ai of S with an edge of positive cost incident to v has its source in the subtree rooted at v: Let q

be the number of different multicasts with a edge of positive cost incident to vertex v:
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We replace v by a binary tree with q þ 1 leaves, if there are unused edges incident to v; and with
q leaves otherwise. The first q are called special and correspond to a submulticast in S incident to v
with at least an edge of positive cost; the last leaf L; if applicable, corresponds to all unused edges
incident to v: Leaf L is the root of a binary tree with l leaves, where l is the number of unused
edges incident to v: Each unused edge incident to v in T is incident to one of these leaves such that
each leaf is incident to one of the unused edges.

Let vði0Þ be the special node corresponding to submulticast ði0;V 0ÞAS and assume t edges of
ði0;V 0Þ are incident to v: Then vði0Þ has two children, one corresponding to the edge e connecting v

to the source of i0 and the other being the root of a binary tree with t 	 1 leaves. The subtree for
vði0Þ in T 0 consists of vði0Þ; its children and the binary tree of t 	 1 leaves. Edge e is connected to
‘‘its’’ leaf and each other edge of ði0;V 0Þ incident to v is incident to one of the other leaves such
that each leaf is incident to one of these edges. Note that these nodes have one child each in T 0;
i.e., are not leaves in T 0:

The root of the binary tree for v is labeled v: A leaf of the binary tree corresponding to a leaf v
of T is also labeled v:

All submulticasts are extended in a natural way to T 0:

Computing the cost functions cost0 and cost1: We want to compute a submulticast of maxði; r�Þ
with maximum residual profit. Thus, we find for each possible profit b; b ¼ 1; 2;y; n; the
submulticast ði;V�Þ that gets b profit and maximizes b 	 a costðbÞ; where costðbÞ is the minimum
profit that S ‘‘looses’’ if ði;V�Þ is accepted. This is equivalent to finding the submulticast with
profit b that minimizes costðbÞ: The basic idea is to use bottom-up dynamic programming to
compute for each node v0 in T 0 the submulticast that minimizes costv0 ðbÞ; where costðbÞv0 is the

minimum cost that S ‘‘looses’’ in the subtree rooted at v0 if the submulticast is accepted.
However, there is a complication at special nodes that requires the use of two cost functions,

cost0v0 and cost1v0 : Let w be a node of T with two children y and z; both belonging to submulticast

ði0;V 0ÞAS: Let y lie on the path from v to the source of i0: Let v0 be the special node vði0Þ in the
subtree of w in T 0 and let l0 and r 0 be its children such that T 0

l0 contains the node labeled y: Assume

profit 0ojob is achieved in Ty and profit b 	 j is achieved in Tz: Then we do not want to add both

costðw; yÞ and costðw; zÞ to costv0 ; since costðw; yÞ considers already the cost of ‘‘loosing’’ all the
requests of ði0;V 0Þ whose path uses w: Instead we want to only add costðw; yÞ and not costðw; zÞ to
costv0 : Thus, to ‘‘tell’’ the recursion on r 0 that it should not add in any more ‘‘lost profit’’ of ði0;V 0Þ
we use the cost function cost0r 0 : If the recursion on r 0 is allowed to add in more ‘‘lost profit’’ of

ði0;V 0Þ (since, e.g., no profit was achieved in Ty), we use cost1r 0 : Note that this complication arises

only at special nodes.

We need to use cost0 in T 0
r 0 until we reach the leaf x0 of the subtree of vði0Þ in T 0 whose edge e to

its child corresponds to ðw; zÞ: When computing cost0x0 we do not add in the cost costðw; zÞ of e and

then use cost1 to recurse on the children of x0: Thus, cost0x0 is only needed at nodes belonging to the

subtree of vði0Þ in T 0 for some submulticast ði0;V 0ÞAS:
We next give the formal definitions. When we want to avoid that the dynamic program chooses

a specific costt
v0 ðbÞ; t ¼ 0; 1; combination, we set its value to N:

(1) For all v0AT 0 and for t ¼ 0; 1: costt
v0 ð0Þ ¼ 0:

(2) For all v0AT 0 such that there are less than b requests of maxði; r�Þ in the subtree of v in T 0

and for t ¼ 0; 1: costt
v0 ðbÞ ¼ N:
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(3) For any b40; for t ¼ 0; 1; and for all v0AT 0 with one child, call the missing child r 0: We
assume that costt

r 0 ðbÞ ¼ N:
(4) For all non-special v0AT 0; let c be the number of requests of maxði; r�Þ at v0: Then,

cost1v0 ðbÞ ¼minfminf j¼1;::;b	c	1gcostðv0; l0Þ þ cost1l0 ð jÞ þ costðv0; r 0Þ þ cost1r 0 ðb 	 c 	 jÞ;
costðv0; l0Þ þ cost1l0 ðb 	 cÞ; costðv0; r 0Þ þ cost1r 0 ðb 	 cÞg

For all special v0 ¼ vði0ÞAT 0; let l0 be the child of v that leads to the source of multicast i0: Then

cost1v0 ðbÞ ¼minfminf j¼1;::;b	1gcostðv0; l0Þ þ cost1l0 ð jÞ þ cost0r 0 ðb 	 jÞ;
costðv0; l0Þ þ cost1l0 ðbÞ; costðv0; r 0Þ þ cost1r 0 ðbÞg

(5) For all v0AT 0 whose children are not labeled by a vertex of T ; let c be the number of requests of
maxði; r�Þ at v0: Then

cost0v0 ðbÞ ¼ minf j¼0;y;b	cgðcost0l0 ð jÞ þ cost0r 0 ðb 	 c 	 jÞÞ:
For all v0AT 0 whose children are labeled by a vertex of T

cost0v0 ðbÞ ¼ minf j¼0;y;bgðcost1l0 ð jÞ þ cost1r 0 ðb 	 jÞÞ:
In (5) we are not adding in costðv0; l0Þ and costðv0; r 0Þ:

Computing costt
v0 ðbÞ for a given v0 and b by bottom-up dynamic programming takes time OðnÞ:

Since there are n different values for b and OðnÞ nodes in the tree, we spend time Oðn3Þ for

multicast i and possible root position r� to compute all cost0 and cost1 values.

Lemma 6. Let s0 be the node of T 0 labeled with the source s of i: The largest residual profit of any

submulticast of maxði; r�Þ is maxbðb 	 a cost1s0 ðbÞÞ:

Proof. Let T 0
v0 be the subtree of T 0 rooted at v0: We prove the following claims by bottom-up

induction:

(1) For each vertex v0AT 0cost1v0 ðbÞ equals

* the minimum number of requests in T 0
v0 of submulticasts in S that cannot be accepted if a

submulticast of maxði; r�Þ accepts b submulticasts in T 0
v0 ;

* and N otherwise.

(2) For each vertex v0AT 0 that belongs to the subtree of vði0Þ for some ði0;V 0ÞAS; cost0v0 ðbÞ equals

* the minimum number of requests in T 0
v0 of submulticasts in S\ði0;V 0Þ that cannot be accepted if

a submulticast of maxði; r�Þ accepts b submulticasts in T 0
v0 ;

* and N otherwise.

The second part of each claim follows by the definition of cost1v0 and cost0v0 ; we only need to show

the first part.
(1) For the basis of the induction, if v0 is a leaf of T 0 it is labeled with a leaf v of T : We can

assume that b requests of maxði; r�Þ are at v0: Note that any submulticast ði0;V 0Þ of S with a
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request at v0 also must have its source at v0: Thus, the request of ði0;V 0Þ can be accepted, even if b

requests of maxði; r�Þ are accepted. Hence, cost1v0 ðbÞ ¼ 0; and the claim holds.
If v0 is an internal vertex of T 0; we distinguish two cases, depending on whether v0 is a special

node or not. Let l0 and r 0 be the two children of v0:

Case 1: v0 of T 0 is not a special node. If v0 is not a special node of T 0; then cost1v0 ðbÞ is defined by

the first part of rule (4).

If only one edge ðv0; l0Þ is incident to v0 then cost1v0 ðbÞ ¼ costðv0; l0Þ þ cost1l0 ðb 	 cÞ and the claim

holds by induction on vertex l0: Otherwise, cost1v0 ðbÞ is defined as the minimum over all the possible

partitions of b 	 c between the two subtrees T 0
l0 and T 0

r 0 : Since inductively cost1l0 and cost1r 0 are

equal to the minimum profit that S loses in T 0
l0 and T 0

r 0 ; the claim holds also for cost1v0 :

Case 2: v0 of T 0 is a special node. If v0 ¼ vði0Þ is a special node of T 0; then cost1v0 ðbÞ is defined by

the second part of rule (4). Let ði0;V 0ÞAS:
The minimum number of lost requests is the minimum over all the possible partitions of b

between the subtree T 0
l0 that contains the edge leading to the source of i0 and the subtree T 0

r 0

containing the other edges of Tði0;V 0Þ: Let w be the node in T to whose binary tree n T 0v0 belongs
and let y be the child of w such that Ty contains the source of i0: Note that in T 0 the edge e from l

to its only child in T 0 has cost costðw; yÞ:
If the submulticast of maxði; r�Þ accepts requests in T 0

l0 then the submulticast contains e: By the

definition of costðw; yÞ; e’s cost costðw; yÞ contains already all the profit of ði0;V 0Þ lost in T 0
r 0 : Thus,

no further lost profit in T 0
r 0 should not be added to cost1v0 : By the inductive claim, cost0r 0 computes

the minimum profit lost by S in T 0
r 0 ; not considering the profit lost by the submulticast to which

edge ðv0; r 0Þ belongs, i.e., the profit of ði0;V 0Þ:
Since cost1v0 ðbÞ is again defined as the minimum over all the possible partitions of b 	 c between

the two subtrees, using cost0l0 for T 0
l0 and cost0r 0 for T 0

r 0 : Thus, the claim follows as in case 1.

If, however, the submulticast of maxði; r�Þ does not accept requests in T 0
l0 ; then the lost profit

equals costðv0; r 0Þ þ cost1r 0 ðb 	 cÞ and the claim holds by induction on r 0:
(2) The edges in T 0 with non-zero cost are edges that connect nodes labeled by a vertex of

T to their parents. Let e ¼ ðx0; y0Þ be such an edge belonging to submulticast ði0;V 0ÞAS: Note
that the higher endpoint x0 of e belongs to the subtree of vði0Þ in T 0 and that all children of x0;
including y0; are labeled with a node in T : Then the cost of no further edge in T 0

y0 is related to the

profit of ði0;V 0Þ; i.e., if ði0;V 0Þ were the only submulticast in S; all edges in T 0
y0 would have zero

cost.

To prove the claim for cost0v0 ðbÞ we distinguish again two cases.

Case 1: v0’s children are labeled by vertices of T : Note that v0 is not labeled and thus, there is no
request of maxði; r�Þ at v0: By the above observation, no edges in the subtree of v0’s children have
costs related to the profit of ði0;V 0Þ: Using induction on l0 and r 0; the minimum number of
requests in T 0

v0 of submulticasts in S\ði0;V 0Þ that cannot be accepted if a submulticast of maxði; r�Þ
accepts b submulticasts in T 0

v0 is given by the minimum over all 0pjpb of cost1l0 ð jÞ þ cost1r 0 ðb 	 jÞ:
Thus, the claim holds.

Case 2: v0’s children are not labeled by vertices of T : Let ði0;V 0Þ be the submulticast such that v0

belongs to the subtree of vði0Þ: Note that the edges from v0 to its children have cost 0 and that v0 is
an internal node of the subtree of vði0Þ: Thus, the children l0 and r 0 of v0 also belong to the subtree
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of vði0Þ: Inductively their cost0 equals the minimum number of requests in T 0
l ; resp. T 0

r 0 ; of

submulticasts in S\ði0;V 0Þ that cannot be accepted if a submulticast of maxði; r�Þ accepts b

submulticasts in T 0
l ; resp. T 0

r 0 : Hence the minimum for T 0
v0 is given by the minimum over all

0pjpb 	 c of cost0l0 ð jÞ þ cost0r 0 ðb 	 c 	 jÞ: Thus, the claim holds. &

Determining bestði; r�Þ: By Lemma 6 the largest residual profit of a submulticast of maxði; r�Þ
is found by determining the value bbest that maximizes the function b 	 a cost1s ðbÞ: The

submulticast bestði; r�Þ is found by reconstructing which edges were used for the computation

of cost1s ðbbestÞ:

3. The online algorithm for trees

We describe an online algorithm ST for unit-capacity trees. For sake of simplicity we
assume that the sources as well as the members of the multicasts are leaves of the tree. The
general case can be easily reduced to this setting. The algorithm consists of two stages. The first
stage is a randomized procedure that selects a subset of requests that will form the set of
‘‘candidate’’ requests C for the second stage. The second stage decides for each request in C
whether to accept or reject it. The requests accepted by the second stage are the requests accepted
by ST.

3.1. The first stage of the algorithm

The first stage runs the multicast algorithm, called MC; of [GHP98] on a tree with capacity u;

where u ¼ log m and m ¼ 4m6M: Then stage 1 adds the accepted requests to C:
On a graph where each link has capacity u; MC achieves a competitive ratio of Oððlog n þ

log logMÞðlog n þMÞlog nÞ: However, we prove in Appendix A that when MC is applied to trees
and compared to an offline algorithm with link capacity 1, its competitive ratio is Oðlog n þ
logMÞ:

3.2. The second stage of the algorithm

In the second stage all the vertices of the tree are partitioned into Oðlog nÞ different classes, by
recursively finding a balanced tree separator. A balanced tree separator [vLe90] is a vertex whose

removal splits the tree into pieces of at most 2
3

n vertices. The tree separator of T is assigned level 0.

Removing the level-0 node splits T into subtrees of level-1. In general, the tree separators of the
level-j trees are assigned level j and removing them creates subtrees of level j þ 1: After a
logarithmic number of recursions the trees obtained are single vertices and the procedure stops. A
similar technique is also used in [ABFR94] for the online call-control problem on trees.

Each of the requests in C is assigned to one of Oðlog nÞ classes as follows. A request from vertex
v to multicast source s is assigned to class j if the vertex of lowest level on the path from v to s has
level j:
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One of the Oðlog nÞ levels is chosen at random by the algorithm before to process the sequence
of requests. We denote with i the level selected.

Stage 2 decides to accept or reject a request in C using the following algorithm:

1. If the request is not of level i then reject it and stop.
2. If the request is the first one of multicast i seen at this step, then:


 Flip a coin with success probability 1
u
:


 If success then pass to step 3 the current and all the future requests to i seen at this step;
otherwise reject all the future requests to i seen at this step and stop.

3. Accept a request from vertex v to source s if no edge on the path from v to s is assigned to
other multicasts; otherwise reject.

The following lemma bounds the expected number of requests accepted by ST :

Lemma 7. The algorithm ST expects to accept an 1
Oðlog n log mÞ fraction of the requests accepted by

MC.

Proof. The expected number of requests passed from step 1 to step 2 of stage 2 is a 1
Oðlog nÞ fraction

of the requests accepted by MC; since the level of each request is chosen uniformly at random

with probability 1
Oðlog nÞ: The expected number of requests passed from step 2 to step 3 is a fraction

1
u

of all the requests received from step 1. This follows since all the requests for a multicast are

passed to step 3 with probability 1
u
:

We are left to prove that each request received at step 3 is accepted with constant probability.
Consider a pair of requests for different multicasts. If they intersect, the intersection is on an edge
adjacent to a level i vertex. Each request is connected to the source through at most two edges
adjacent to a level i vertex. The probability that a request is accepted is then given by the
probability that these 2 edges are not assigned to other multicasts.

Any edge of the tree is part of at most u multicasts given the maximum capacity of the edges of
the tree for the online algorithm in the MC solution. The edge is assigned to each of these

multicasts with probability 1
u
; if the algorithm decides to accept requests from this multicast. When

a request arrives at step 3, the probability that an edge adjacent to the level i vertex on the path to

the source has not been assigned to a different multicast is then lower bounded by ð1 	 1
u
Þu
X1=e:

The probability that both edges adjacent to a level i vertex have not been assigned is then lower
bounded by 1=2e; thus proving the claim. &

This leads to the following theorem:

Theorem 8. There exists an Oððlog n þMÞðlog n þ log logMÞlog nÞ-competitive algorithm for
multicast routing on unit-capacity trees.

A randomized lower bound of Oðlog n logMÞ follows from [AAFL96] since the multicast
routing problem on trees of unit capacity contains the online set cover problem.
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4. The offline algorithm for a mesh

We present an Oððlog log nÞ2Þ-factor approximation algorithm on meshes. The algorithm
partitions the mesh into squares of logarithmic size and divides every square into an external and
an internal region. The external region of a square is reserved to route requests into, out of, and
through the square. It is called the crossbar structure of the mesh. To avoid edge-overlapping we
discard all requests whose request node or source belongs to an external region. From the
remaining requests the algorithm considers with equal probability either only short requests
directed from a request vertex to a source in the same square, or only long requests directed from a
request vertex to a source in a different square. A randomized rounding technique based on a
novel formulation of the multicast routing problem as an integer linear program is then used in
conjunction with the use of a simulated network with edges of higher capacity.

Let G denote the n � m two-dimensional mesh such that m ¼ YðnÞ: Wlog., mXn: We assume n

sufficiently large such that Ilog log log nmX3: Define B ¼ 4Ilog nm; f ðkÞ ¼ k div 9B; and f1ðkÞ ¼
k mod 9B: Given two integer values a and b an ða; b;BÞ-partitioning of the mesh G is a partitioning
into f ðnÞ � f ðmÞ submeshes of OðBÞ size induced by segmenting the horizontal and the vertical
side of the mesh. The horizontal side is partitioned into a segment from column 1 to column a;
followed by f ðmÞ 	 f1ðmÞ contiguous segments of size 9B; by f1ðmÞ 	 1 segments of size 9B þ 1
and by a last segment of size 9B þ 1 	 a: The vertical side of the mesh is partitioned in a similar
way with b used in place of a and n instead of m: By abuse of notation every resulting submesh is
called a square, even though the size of the two sides of a square may differ. Note that each node
belongs to exactly one square while an edge can be incident to nodes of two different squares. We
denote the square containing a node t by St:

The border of G is formed by all nodes of degree less than 4. The first ring in a square S consists
of all nodes of S that are incident to a node outside of S or belong to the border of G: Recursively,
the ith ring of S with i41 consists of all nodes of S that are incident to a node of ring i 	 1 of S:
The innermost ring of a square is either a single vertex or a line of nodes. A ring that is not the
innermost ring either forms a rectangle (if its square does not contain nodes of the border of G) or

forms a rectangle with one or two borders of G: In any square S we define two regions R1
S and R2

S:

Region R1
S consists of rings from 1 to B; region R2

S contains all remaining rings of S: Ring B þ 1 is

the border of R2
S:

Let A be the sequence of requests. The algorithm chooses two integer values a and b uniformly
at random in the interval 2B þ 1;y; 7B and constructs an ða; b;BÞ-partitioning. Then it discards

all requests ðt; sÞ such that either t or s does not belong to the R2 region of its square. The set of
remaining requests is denoted by C: The following lemma implies that for any input sequence A;
E½jOPTðCÞj�XjOPTðAÞj=25 since for every request ðt; sÞ the probability that t and s both belong

to R2 is at least 1
25
:

Lemma 9. Given two nodes t and s they both belong to region R2 of their squares with probability at

least 1
25
:

Proof. We prove separately that the x and the y coordinates of t and s are within region R2 with
constant probability. Consider interval I ¼ ½2B þ 1;y; 7B� from which a is chosen uniformly at
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random. Since region R1 has width 2B; xt falls within region R2 if a is chosen out of a subset Is of I

of size at least 3B: Analogously, xs falls within region R2 if a is chosen out of a subset It of I of size
at least 3B: Since I has size 5B; for at least B out of 5B possible values of a; i.e., with probability at

least 1
5
; both xt and xs fall with region R2: By symmetry, yt and ys fall within region R2 with

probability at least 1
5
: It follows that with probability at least 1

25
every request has both endpoints in

region R2: &

By the choice of a and b; at least 2B rings are contained in a square. Thus, region R1
S is always

complete, while region R2
S is formed by at least B rings.

The set of requests C is partitioned into the set of long requests L ¼ fðt; sÞAC : StaSsg and the
set of short requests S ¼ fðt; sÞAC : St ¼ Ssg: For iAM; denote by Li ¼ ft : ðt; siÞALg the set of
request nodes of multicast i:

The algorithm decides with equal probability to accept either only long requests or only short
requests. We describe next the algorithm specialized for long requests then the algorithm
specialized for short requests.

4.1. Long requests

Our approach is to transform the problem into a problem on a network G0; then formalize the
problem on G0 as IP, relax it to an LP, solve the LP, and round the LP solution probabilistically.
Finally we use the rounded solution to construct a solution in G:

Mesh G is transformed into a network G0 ¼ ðV 0;E0Þ as follows. For every square S of G;
network G0 contains vertex xS: The vertices xS and xS0 of two adjacent squares S and S0 are

connected by an edge of capacity ½log n�: For every square S of G; every vertex u of region R2
S

has a corresponding vertex u0 in G0: For any pair of adjacent vertices u; v in R2
S; vertices u0; v0

in G0 are linked with an edge of unit capacity. Every vertex of the border of R2
S is connected

to xS by an edge of unit capacity. For every multicast i and for every request vertex uALi; a
vertex u0i is connected to vertex u0 with a unit-capacity edge. The input sequence for the multicast

routing problem on G0 is created by transforming every request ðt; sÞALi into a request ðt0i; s0iÞ
in G0:

The next step is to formulate the multicast routing problem in G0 as a packing problem: For
every multicast i consider the set Ti consisting of all trees containing si and a non-empty subset of

the request nodes t0i: Since we introduced the nodes t0i; Ti-Tj ¼ | for iaj: Let T ¼
S

iAM Ti:
Denote by VðTÞ the set of vertices of tree T and by EðTÞ the set of edges. Let the benefit of tree
TATi be bðTÞ ¼ jft0iAVðTÞ : tALigj:

We associate a variable xTAf0; 1g with every tree TAT: Edges of E0 are subject to con-
straints: X

TAT:eAEðTÞ
xTpcðeÞ; 8eAE0; ð1Þ

X
TATi:eAEðTÞ

xTp1; 8eAE0;8iAM: ð2Þ
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The multicast routing problem consists in maximizing the following objective function:

S ¼
X

TAT

bðTÞxT :

The fractional packing problem is obtained replacing the integrality constraints on variables xT

with constraints xTX0: We also drop edge constraints (2) to obtain a linear program where every
edge is involved in a single constraint and solve it using the polynomial time e-approximation
algorithm of Garg and Könemann [GK98] based on duality. The algorithm assigns a dual
variable yðeÞ to every edge eAG0: The central step of the algorithm requires to find the variable xT

with maximum ratio opt ¼ bðTÞ=
P

eAT yðeÞ: This problem is NP-hard, since it corresponds to

finding the densest tree in the network G0 where edges are weighted with the values of the dual

variables. However, it is easily checked that if we find a variable xT̃ with bðT̃Þ=
P

eAT̃ yðeÞXopt=a
then the algorithm of [GK98] also gives a 1 þ e-factor approximation of the fractional multicast
problem on G0:

As was previously observed by [Awe96] a k-MST algorithm can be used to solve the densest tree
problem. The 3-approximate k-MST algorithm of Garg [Gar96] can be adapted to work in the
case the k vertices are restricted to be request vertices of the same multicast. Thus, for every
multicast i and every k ¼ 1;y; jLij; the 3-approximate k-MST algorithm is applied. It finds the
tree TiðkÞ spanning k request vertices of Li such that

P
eATiðkÞ yðeÞp3optk;i; where optk;i ¼

minf
P

eAT yðeÞ; bðTÞ ¼ k;TATig: Then the tree of maximum ratio k=
P

eATiðkÞ yðeÞ over all k

and all i is selected. Since this ratio has value at least opt=3; this results in an 1 þ e-factor
approximation algorithm for the fractional multicast problem.

Denote by x�
T the solution of the fractional multicast routing problem.2

Let s ¼ 1=ððc log log nÞ2Þ; where cXe is an appropriate constant to be fixed later. The algorithm

rounds variable xT to %xT ¼ 1 with probability sx�
T ; and to %xT ¼ 0 with probability 1 	 sx�

T : Let %Gi

be the graph with edges Eð %GiÞ ¼
S

TATi: %xT¼1 EðTÞ: For any multicast i the algorithm selects an

arbitrary spanning tree %Ti of graph %Gi:

The trees %Ti do not form the integral solution since there might be violated edge capacities for
the unit-capacity edges. However, as described below, the requests accepted by the final solution

form a subset of the requests accepted by the trees %Ti and the size of the subset is a constant

fraction of the requests accepted by the trees of %Ti: To prove the approximation bound, we show
in the appendix that the value S of the optimal solution of the fractional packing formulation is
within a constant factor of the optimal integral solution on the set of requests L (Lemma 17), and

that the expected number of request nodes contained in the trees %Ti is within a factor of

Oððlog log nÞ2Þ of the value S (Lemma 18).

Let L1
i ¼ Li-Vð %TiÞ be the set of request vertices to multicast i that are spanned by tree %Ti if

no edge ðxS; xS0 Þ of G0 is violated, L1
i ¼ | otherwise, and let L1 ¼

P
iAML1

i : We prove that with

at least constant probability no edge ðxS;xS0 Þ of G0 is violated, i.e., L1a| (Lemma 19). If L1 ¼ |;
the algorithm terminates without accepting any multicast. Otherwise, each request of Li accepted

2Let for some i; fT ð1Þ;y;T ð jÞg be the set of all the trees of Ti with xT ðlÞ ¼ 1; for all 1plpj: Then T ð1Þ,?,T ð jÞ

forms the multicast tree for multicast i:
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by the final solution is routed along a path containing the same edges ðxS; xS0 Þ as its path to the

source in %Ti: The remaining problem is to route request nodes and sources to the border of their
square. This problem was called the escape problem. The solution proposed by Kleinberg and
Tardos for unicast routing [KT95] uses the fact that the benefit collected in a square is of the same
order as the maximum flow that can be routed through the border of the square. This is not true

for multicast routing: the maximum benefit that can be collected in a square is Oðlog2 nÞ; while the
maximum flow that can be routed through the border of the square is Oðlog nÞ: Thus, using
the same maximum flow approach as in [KT95], which means routing request nodes individually
out of the square, leads to an Oðlog nÞ-factor approximation. We give instead a recursive

approach that achieves a 0ððlog log nÞ2Þ-factor approximation.

Our basic idea is to recursively partition every region R2
S into subsquares of size Oðlog log nÞ;

and each subsquare Q into a subregions R1
Q and R2

Q: Requests are routed to the border of R2
Q on

the same path as in the trees %Ti and from there they use rings of the R1 regions of subsquares to

reach the border of R2
S: The sequence of subsquares used for a request is the same as on the path

in %Ti: Therefore we enforce that the trees %Ti are edge-disjoint within the R2
Q regions and that there

are at most Oðlog log nÞ trees connecting between any two neighboring subsquares.
We next give the details: A gate vertex for multicast i in square S is a vertex q on the border of

R2
S such that ðq;xSÞ belongs to %Ti: Let gð pÞ be the gate vertex closest to node pALi on the path

from p to si in %Ti closest to p: Let gðsiÞ be a gate vertex closest to si on a path from si to a node

outside Ssi
in %Ti: The escape problem is the problem to connect each request node p to gð pÞ and to

connect each source to s to at least one gðsiÞ: Let S be a square whose region R2
S consists of a

k1 � k2 mesh. Let k ¼ minðk1; k2Þ and let BS ¼ 4Ilog km: Note that kXB: The algorithm
uniformly chooses two integer values aS and bS from the interval 2BS þ 1;y; 7BS for each square

S and creates an ðaS; bS;BSÞ-partitioning for the region R2
S: Each submesh Q created by this

partitioning is called a subsquare. If Q does not contain nodes of the border of R2
S; region R1

Q of

subsquare Q consists of rings 1 to BS; region R2
Q consists of the remaining part of Q: If Q contains

nodes of the border of R2
S; we need a different definition: Let Q be a k3 � k4 mesh with

k3; k4p9BS: Assume Q is extended into a 9BS � 9BS mesh Q0 by nodes outside of R2
S: Regions

R1
Q0 ; and R2

Q0 ; are denned as above. Region R1
Q is then R1

Q0-R2
S and region R2

Q is R2
Q0-R2

S: By the

choice of aS and bS and the definition of R2
Q there are gate vertices in S that belong to R2

Q if

subsquare Q lies on the border of R2
S:

(1) The algorithm rejects all requests whose source or request node belongs to the region R1
Q of

their subsquare Q: The remaining set of requests is called L2: A subsquare is called invalid if one

of the edges of G0 incident to a node in the subsquare belongs to more than one tree %Ti: Since every

edge is assigned to a tree with probability Oð1=ðlog log nÞ2Þ; a subsquare in not invalid with at
least constant probability (Lemma 23). (2) Every request node belonging to an invalid subsquare
is discarded and every multicast whose source belongs to an invalid subsquare is discarded. The

set of remaining requests is called L3: A square S is called invalid if there exists a pair of

neighboring subsquares Q and Q0 of S such that more than BS=4 trees %Ti contain an edge incident
to Q and Q0: Every square is proved to be not invalid with at least constant probability (Lemma
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24). (3) Every request node belonging to an invalid square is discarded and every multicast whose

source belongs to an invalid subsquare is discarded. The set of remaining requests is called L4: (4)

All request nodes p in L4 such that gð pÞ belongs to R1
Q for some subsquare Q are discarded and

multicast i is discarded if all gate vertices of square S containing source si belong to R1
S: The set of

remaining requests is called L5: (5) Finally all requests p of L5 such that gð pÞ belongs to an
invalid subsquare are discarded, and multicast i is discarded if in a square S containing source si

all gate vertices in S connected to si in %Ti belong to invalid subsquares. The set of remaining

requests, called L6; is accepted. Set L6 is expected to be at least a constant fraction of set L4

(Lemmas 25 and 26).

4.1.1. Routing algorithm
We next show how to route the accepted requests, i.e., how to construct the multicast tree Ti for

multicast i: The basic idea is to route using the same squares and subsquares as the tree %Ti but to

route ‘‘through’’ a square S in R1
S and ‘‘through’’ a subsquare Q in R1

Q:

Let %T
f

i be the subtree of %Ti spanning si and the vertices in %Ti-L6; the request vertices accepted

for multicast i: We first explain how to connect gate vertices. For every vertex xS of %T
f

i the

algorithm assigns a ring rS;i of region R1
S to multicast i: For every edge ðxS; xS0 Þ of %T

f
i let r be the

ring of frS;i; rS0;ig with larger index. The algorithm assigns to multicast i the straightline extension

of r from one corner of r to the other ring, thereby connecting rS;i and rS0;i: For a vertex xS of %T
f

i

and every gate vertex q of multicast i belonging to the horizontal (vertical) side of the border of R2
S

and to a valid subsquare of S; the algorithm assigns to multicast i the vertical (horizontal)
straightline path from q to rS;i: Note that all gate vertices of multicast i in S are connected to the

same ring rS;i:
Next we describe how to connect a request node p of multicast i in S to its gate vertex q ¼ gð pÞ:

Let Q be the subsquare of p and Q0 be the subsquare of q: Recall that gð pÞ lies in region R2
Q: Let P

be the path between p and q in %Ti and let ep be the edge on P closest to p and incident to exactly

one node of R2
Q: Let eq be defined symmetrically.

For every subsquare Q such that (i) %T
f

i contains a vertex of R2
Q and (ii) si or a request node of %Ti

belongs to S we assign a ring rQ;i of R1
Q to multicast i; where S is the square containing Q:

If Q ¼ Q0 and p is connected to q in %T
f

i by a path in R2
Q then p is connected to q in the same way

in Ti: If Q ¼ Q0 and p is connected to q in %T
f

i by a path P with edges outside R2
Q; we connect both

p and q to rQ;i in Ti: Request vertex p is connected to rQ;i in Ti by the part of P from p to ep and

then the straightline extension from ep to rQ;i: Gate node q is connected to rQ;i in Ti in an analogue

way.
If QaQ0; then p is connected to q by the same path as above to rQ;i; then the path P0 described

below to rQ0;i; and finally the same path as above from rQ0;i to q: To construct path P0 the above

algorithm to construct a path between gate vertices is applied: for each neighboring pair ðQ1;Q2Þ
of subsquares on P a horizontal or vertical connection between rings rQ1;i and rQ2;i is assigned to
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the multicast. Path P0 is a simple path between rQ;i and rQ0;i created from the assigned rings and

connections.
Next we describe how to connect the source of i to one of the gate vertices q of i in S: This

suffices since all gate vertices of i in S are connected to the same ring rS;i: Recall that one of the

gate vertices, say q; belongs to R2
S: The algorithm connects s to q in the same way as it connected a

request node p to q:

4.1.2. Proof of correctness

We show that the resulting multicast trees Ti are edge-disjoint. The multicast tree for multicast i
is contained in the rings rS;i of squares and rings rQ;i of subsquares assigned to i; the assigned

horizontal or vertical connections between assigned rings and from gate vertices or edges ep to

rings, and paths of %T
f

i in regions R2
Q of subsquares.

We distinguish the following seven types of paths used by the multicasts and show below that

(1) for each square S the algorithm can assign a unique ring rS;i if xSA %T
f

i (Claim 10); (2) for each

subsquare Q the algorithm can assign a unique ring rQ;i if %T
f

i contains a vertex of R2
Q and si or a

request node of %Ti belongs to the square of Q (Claim 11); (3) for every edge ðxS; xS0 Þ in %T
f

i the

algorithm can assign a unique horizontal or vertical connection between rS;i and rS0;i (Claim 12);

(4) for each gate vertex q of multicast i in square S the algorithm can assign a unique horizontal or
vertical connection between q and rS;i if q belongs to a valid subsquare (Claim 13); (5) for every

neighboring pair ðQ1;Q2Þ of subsquares and for each multicast i the algorithm can assign a unique
horizontal or vertical connection between rQ1;i and rQ2;i if they both exist, (Claim 14); (6) if p is

either a request vertex in %T
f

i or a gate vertex such that a request node of %T
f

i in Sp connects

through p to si; then the algorithm can assign a unique horizontal or vertical connection between

ep to rQ;i; where Q is the subsquare containing p (Claim 15); (7) if p is either a request vertex in %T
f

i

or a gate vertex such that a request node of %T
f

i in Sp connects through p to si; then the algorithm

can uniquely assign the path in %Ti from p to ep or to gð pÞ if this path is contained in R2
Q; where Q

is the subsquare containing p (Claim 16). Since the set of edges that can be used for type-ð jÞ paths
is disjoint from the set of edges that can be used for type-ð j0Þ paths with jaj0; proving the claims
shows the correctness of the algorithm.

Claim 10. The number of trees %T
f

i including vertex xS for a square S is at most the number of rings

B of region R1
S:

Proof. The number of trees %T
f

i including an edge e ¼ ðxS; xS0 Þ does not exceed cðeÞ: Every tree

containing xS but not a terminal in R2
S takes two units of capacity on edges ðxS;xS0 Þ: Every tree

containing a terminal in R2
S takes at least one unit of capacity on edges ðxS; xS0 Þ: Since the overall

capacity of edges ðxS;xS0 Þ is at most 4Ilog nm ¼ B; a ring of R1
S can be assigned to every tree %T

f
i

containing xS: &

M.R. Henzinger, S. Leonardi / Journal of Computer and System Sciences 66 (2003) 567–611586



Claim 11. There are at most BS trees %T
f

i such that (i) %T
f

i contains a vertex of region R2
Q of a

subsquare Q and (ii) si or a request node of %T
f

i belongs to S; where S is the square containing Q:

Proof. Assume by contradiction that a subsquare Q does not fulfill the claim. The trees %T
f

i that

contain a vertex of region R2
Q each use at least one edge with exactly one endpoint in Q: Thus

there exists a neighboring subsquare Q0 of Q in S such that more than BS=4 trees %T
f

i contain an

edge incident to Q and Q0: It follows that S is invalid and the algorithm discards all request nodes

in S and all multicasts whose source is in S: Thus, none of the trees %T
f

i contains a request node or

source in S: Contradiction. &

Claim 12. Let S and S0 be a pair of adjacent squares. For each multicast i with edge ðxS; xS0 ÞA %T
f

i

the algorithm can assign a unique horizontal or vertical straightline connection between rS;i and rS0;i:

Proof. Since each ring is assigned to at most one multicast, there are at most two multicasts that
potentially want to use a straightline extension, namely one from ring r in S and one from ring r in
S0: Since there are two ‘‘corners’’ of ring r; there are two straightline extensions from ring r
between S and S0 and hence each of the two multicasts can be assigned a unique one. &

Claim 13. For each gate vertex q of multicast i in a valid subsquare Q the algorithm can assign a

unique horizontal or vertical connection between q and rS;i; where S is the square containing Q:

Proof. Since the subsquare Q of q is valid, the edge ðq; xSÞ belongs to at most one multicast and

the horizontal or vertical connection between q and any ring of R1
S can be uniquely assigned to

this multicast. &

Claim 14. For every neighboring pair ðQ1;Q2Þ of subsquares and for each multicast i the algorithm

can assign a unique horizontal or vertical connection between rQ1;i and rQ2;i:

Proof. The same proof as for Claim 12 applies. &

For the following two claims, let i be a multicast, and let p either be a request node in %T
f

i or a

gate node such that a request node p0 of %T
f

i in Sp connects through p to si: Let Q be the subsquare

of p: If p is a request node, let ep be the edge closest to p and incident to Q on the path from p to si

in %T
f

i : If p is a gate node, let ep be the edge closest to p and incident to Q on the path from p to p0:

Claim 15. The algorithm can assign a unique horizontal or vertical connection between ep to rQ;i:

Proof. If p is a request node, then Q is valid since otherwise p would not belong to %T
f

i : If p is a

gate node, then Q is valid since otherwise the request node connecting through p would have been
discarded.
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It follows that each edge in Q belongs at most one tree %Ti; and the algorithm assigns the
straightline extension from ep to rQ;i only to this multicast. &

Claim 16. If the path in %Ti from p to ep or to gð pÞ is contained in R2
Q; it is edge-disjoint from any

other multicast tree.

Proof. The same argument as in Claim 15 shows that each edge in Q belongs at most one tree %Ti:

Thus the edges on the path in %Ti from p to ep or to gð pÞ are used only for one multicast. &

4.1.3. Proof of the approximation ratio

We prove that the algorithm gives an Oððlog log nÞ2Þ approximation using the following steps:
Recall that S is an upper bound of the optimal fractional solution. Lemma 17 shows that the value
S is within a constant factor of the optimal integral solution on set of requests L: Lemma 18

shows that the expected profit of the trees %Ti is at least sS=e2: Lemma 19 shows that the capacity
of no edge ðxS; xS0 Þ is violated with at least constant probability. Lemma 21 shows that

E½jL1j�XsS=e2: Lemma 22 shows that E½jL2j�XjL1j=25; Lemma 23 shows that

E½jL3j�XjL2j=2; Lemma 24 shows that E½jL4j�XjL3j=4; Lemma 25 shows that

E½jL5j�XjL4j=25; and finally Lemma 26 shows that E½jL6j�XjL5j=4:

Lemma 17. Let OPT be the optimal integral solution on set of requests L: Then OPTp37S:

Proof. Edge e ¼ ðxS; xS0 Þ has capacity cðeÞ ¼ Ilog nm in the fractional packing formulation on
network G0: The border between square S and S0 has size 9B þ 1p37Ilog nm: The optimal
integral solution for the multicast routing problem on set of requests L can be transformed into a

feasible solution for the fractional packing problem assigning capacity 1
37
: The claim of the lemma

follows. &

Lemma 18. Let b ¼
P

%Ti
bð %TiÞ: Then E½b�XsS=e2:

Proof. Note that E½b� equals the expected number of request nodes contained in the trees %Ti: Let t

be a request node of Li and let %xt0
i
¼
P

TATi:t0iAVðTÞ x�
T : We show below that

Pr½t0iAVð %TiÞ�X
s %xt0

i

e2
:

Summing over all request nodes t0i it follows that

E½b�X
X

i

X
t

s %xt0
i

e2
¼
X

i

X
TATi

bðTÞsx�
T=e2 ¼ sS=e2:

We are left with showing the bound on Pr½t0iAVð %TiÞ�: Let fTi: xTi
40; i ¼ 1;y; rg be the set of

trees in the fractional solution spanning vertex t0i: If r ¼ 1; the claim is true, since Pr½t0iAVð %TiÞ� ¼
s %xti

: Consider rX2: The probability that vertex t0i is in graph %Gi is lower bounded by
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P
j¼1;y;r Pr½ %xTj

¼ 1 and %xTi
¼ 0; 8iaj� ¼

P
j¼1;y;r sx�

Tj

Q
iajð1 	 sx�

Ti
Þ: This expression is mini-

mized when all the probabilities have equal value x�
Tj
¼

%xt0
i

r
: We then have Pr½t0iAVð %TiÞ�Xrð

s %xt0
i

r
Þð1 	

s %xt0
i

r
Þðr	1Þ

Xs %xt0
i
exp 	 ðs %xt0

i

r
r	1

ÞXs %xt0
i
e	2; since s %xt0

i
p1: &

Lemma 19. For every edge e ¼ ðxS;xS0 Þ of G0 with capacity cðeÞ ¼ Ilog nm;Pr½jf %Ti :

eAEð %TiÞgj4cðeÞ�pn	log log log n:

Proof. Let XðeÞ ¼ jfT : eAEðTÞ; %xT ¼ 1gj: Since XðeÞXjf %Ti : eAEð %TiÞgj it suffices to show the
bound for Pr½XðeÞ4cðeÞ�:

We prove the claim using the following version of Chernoff bounds [Rag88]:

Proposition 20. Let X1;X2;y;Xn be independent Poisson trials such that, for 1pipn; Pr½Xi ¼
1� ¼ pi; where 0opio1: Then, for X ¼

Pn
i	1 Xi; m ¼ E½X � ¼

Pn
i¼1 pi; and any d40;

Pr½X4ð1 þ dÞm�o ed

ð1 þ dÞð1þdÞ

" #m
:

We need to bound Pr½X4ð1 þ dÞm� ¼ Pr½XðeÞ4cðeÞ�; for which we set d ¼ cðeÞ
m 	 1: For the

expected value m we have m ¼
P

TAT:eAEðTÞ x�
TpscðeÞ: Applying Chernoff bounds we obtain

Pr½XðeÞ4cðeÞ�o e
ðcðeÞm 	1Þ

ðcðeÞ
m Þ

cðeÞ
m

2
64

3
75
m

p
1

ðc
e
ðlog log nÞ2ÞIlog nm

pn	log log log n: &

Lemma 21. E½jL1j�XsS=2e2:

Proof. By Lemma 19, the capacity of an edge is violated with probability at most n	3; since
log log log nX3: No edge ðxS;xS0 Þ of network G0 is then violated with probability at least 1=n: The
claim follows. &

Lemma 22. E½jL2j�XjL1j=25:

Proof. Follows from Lemma 9. &

Lemma 23. There is a suitable choice of c such that for every subsquare Q; Pr½(eAVðR2
QÞ : jf %Ti :

eAEð %TiÞgj41�p1=2:

Proof. Region R2
Q contains Oððlog log nÞ2Þ edges. Consider edge e of subsquare Q and consider

the solution of the fractional packing problem. Every edge e of R2
Q is assigned to tree T with
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probability sx�
T : Since the fractional solution is feasible,

P
TAT x�

Tp1: The ‘‘expected capacity’’ of

edge e assigned to a tree %Ti is then bounded by s: Using the Markov inequality we have that the
probability that the capacity of an edge e is exceeded is bounded by s: With a suitable choice of c;

the probability that the capacity of at least one edge of R2
Q is violated is bounded by

sOððlog log nÞ2Þp1
2
: &

Lemma 24. E½jL4j�XjL3j=4:

Proof. We show that the probability that a square is invalid is at most 1
2
: Let Q and Q0 be

neighboring subsquares. Let TQQ0 be the set of trees containing an edge between Q and Q0 and

having x�
T40: Let m ¼

P
TATQQ0 x�

Tpð9BS þ 1Þs and let X be the number of trees T in TQQ0 with

xT ¼ 1: X is clearly an upper bound to the number of distinct trees crossing the border between
two subsquares. Choosing a suitable large constant c; we prove in a way similar to Lemma 19 that

Pr½X4BS=4�pððlog nÞ	log log log nÞ: Since there are Oðlog nÞ2 adjacent subsquares in a square S;
and log log log nX3; with probability at least 1 	 Oðl=log nÞ no border between two adjacent

subsquares is crossed by more than BS=4 distinct trees. A request t of multicast i of L3 is in L4 if
square St and square Ssi

are valid. The theorem then follows. &

Lemma 25. E½jL5j�XjL4j=25:

Proof. Let ðs; tÞ be a request of L4 and let q be a gate vertex in Ss: Request ðs; tÞ belongs to L5 if

qAR2
Ss

and gð pÞAR2
St
: By Lemma 9 this happens with probability at least 1

25
: &

Lemma 26. E½jL6j�XjL5j=4:

Proof. As shown by Lemma 23 a subsquare is invalid with probability at most 1
2
: A request t of

multicast i of L5 is in L6 if the subsquare SgðtÞ and subsquare SgðsiÞ are valid. &

We then conclude with the following:

Lemma 27. There exists an Oððlog log nÞ2Þ approximation algorithm for long requests for the
multicast routing problem on meshes.

4.2. Short requests

We complete the approximation algorithm for meshes describing the algorithm for short
requests. We separately consider every square S of G and set of requests SS ¼ fðt; sÞ: Ss ¼ Sg:
We apply recursively the algorithm for requests SS in a square S: Square S is partitioned in
subsquares of size Oðlog log nÞ: Denote by Q the generic subsquare. Those requests of SS that are
considered long requests within square S are dealt by the algorithm of the previous section. Those
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requests of SS that are considered short requests within a subsquare Q are dealt with exhaustive
search of the best solution for the multicast routing problem in submesh Q of size Oðlog log nÞ;
which takes time polynomial in n:

We then conclude with the following lemma for short requests.

Lemma 28. There exists an Oððlog log log nÞ2Þ approximation algorithm for short requests for the
multicast routing problem on meshes.

This shows the desired theorem.

Theorem 29. The above algorithm gives an Oððlog log nÞ2Þ-factor approximation for multicast

routing on unit-capacity meshes.

5. The online algorithm for meshes

We propose an algorithm with polylogarithmic competitive ratio on meshes. As in the unicast
algorithm for meshes [KT95] the algorithm partitions the mesh into squares of size 13B � 13B;
where B ¼ Yðlog nÞ: Then it uses four main ideas: (1) It ‘‘filters’’ requests in stage one to ‘‘make
space’’ for our routing, but it guarantees that if a square contains requests, then at least one request

of them survives the filtering. Thus, step one ‘‘looses’’ an Oðlog2 nÞ factor. (2) Stage two contracts
each square to a node and runs the algorithm MC of [GHP98] on G0: For each accepted request
MC returns a path consisting of a sequence of neighboring squares. To translate this sequence into a
path in the original mesh we have to be able to construct B disjoint paths between neighboring
squares. The idea is that a path from a neighboring square enters a square in the ‘‘middle’’ B links
between the two squares. Within a square each path is assigned its own concentric ring on which it
proceeds until it reaches either the appropriate row3 or column to exit the square or its multicast
tree. (3) However there can be requests accepted by MC which cannot be routed ‘‘locally’’, i.e., there
is a conflict in the squares of the endpoints. These requests have to be rejected. In the unicast setting
this causes no problem since the rejection of a request does not affect routing of requests accepted
later on. In the multicast setting, however, MC might output a path in G0 that does not connect the
request to its source in G since an earlier request of the same multicast was accepted by MC and
rejected by our algorithm. We handle this situation by always connecting the same squares as MC
even if the request is not accepted. (4) Since latter requests might be more profitable than earlier
ones, the algorithm selects each multicast with roughly equal probability (after passing some
additional screening for ‘‘routability’’) and discards all unselected multicasts.

5.1. The first stage of the algorithm

Let G ¼ ðV ;EÞ denotes the n � n two-dimensional mesh. We assume that n is sufficiently large

such that B ¼ IIlog nm
13

mX1:

3We use row to denote a horizontal path and column to denote a vertical path in the mesh.
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Let f ¼ n divIlog nm and let f1 ¼ n mod Ilog nm: We partition the mesh into f 2 submeshes of
logarithmic size. The partition of the mesh is obtained segmenting every side into f 	 f1
contiguous segments of size Ilog nm followed by f1 segments of size Jlog nn: By abuse of notation
every submesh is called a square, even though the size of the two sides may differ by 1. We denote
the square containing a node t by St:

The first ring in a square S consists of all nodes of S that either are incident to a node outside of
S or have degree less than 4 in the mesh G: Recursively, the ith ring of S with i41 consists of all
nodes of S that are incident to a node of ring i 	 1 of S: Each ring, except the innermost, forms a
rectangle of nodes, the innermost ring either forms a rectangle or a line of nodes. A corner of a
ring is a corner of the rectangle or an endpoint of the line. The first ring is also called the border

of S:

In any square S we define three regions R1;R2 and R3: Region R1 consists of rings 1 to 2B;

region R2 consists of rings 2B þ 1 to 4B; and region R3 is formed by rings 4B þ 1 to 6B and the
remaining piece of S; called the central region of S: The central region is a rectangle with sides of
size at least B; i.e., consisting of at least B rings.

The first stage of the algorithm selects for each square one of its regions at random. The selected
region is used to route paths ‘‘through’’ the square. All requests whose request node or source
belong to the selected region are rejected to guarantee that they do not overlap with the paths
routed through the selected region. Additionally, each ring of the square is randomly dedicated

either to sources or to request nodes and requests not following the dedication are rejected. Again
the idea is to guarantee that requests with a source in a ring does not overlap with a request node
in the same ring.

The details of the first stage are as follows:

1. Dedicate each ring to multicast sources with probability 1
2
; otherwise to request nodes.

2. Select uniformly at random one of the three regions in each square.
3. Discard all the requests from vertex t to source s if t or s are in a selected region.
4. Discard all the requests from a vertex t on a ring dedicated to sources, unless the request is

directed to a source s on the same ring of t:
5. Discard all the multicasts whose source is in a ring dedicated to requests.

Let the original sequence of requests be called A and let the remaining set of requests be called C:
Denote by OPTðAÞ the sequence of requests accepted by the optimal algorithm over a set of
requests A:

Lemma 30. For any input sequence s;EðjOPTðCÞjÞX 1
12
jOPTðAÞj:

Proof. Let us consider the probability that a request ðt; sÞ of OPTðAÞ belongs to C: Assume first
that both t and s are within the same square. Then ðt; sÞ belongs to C if (a) both are outside the
selected region, and (b) the ring of s is dedicated to sources and the ring of t is either dedicated to

requests or equal to s’s ring. Condition (a) is fulfilled with probability at least 1
3
; condition (b) with

probability at least 1
4
: Thus, ðt; sÞ belongs to C with probability at least 1

12
:

Assume next that t and s belong to different squares. Then ðt; sÞ belongs to C if (a) both are
outside the selected region, and (b) the ring of s is dedicated to sources and the ring of t is
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dedicated to requests. Condition (a) is fulfilled with probability at least 4
9
; condition (b) with

probability at least 1
4
: Thus, ðt; sÞ belongs to C with probability at least 1

9
:

This shows that E½jOPTðAÞ-Cj�X 1
12
jOPTðAÞj: Since jOPTðCÞjXjOPTðAÞ-Cj; the result

follows. &

5.2. The second stage of the algorithm

The second stage of the algorithm receives as input the requests of C accepted by the first
stage, in the order in which they are presented to the algorithm. It partitions C into the set L0

of long requests, and the set S0 of short requests. A request ðt; sÞ is a long request if at
presentation no branch of the multicast rooted at s is in St: Otherwise, ðt; sÞ is a short request.
The algorithm routes short requests ‘‘locally’’ within the square and uses MC for long
requests.

Recall that each square contains 13B concentric rings. To guarantee that the trees used for
different multicasts are edge-disjoint we maintain the invariant that

(I1) All edges of a ring that belong to any multicast tree belong to the same multicast tree.

To maintain the invariant each ring is assigned by the algorithm to at most one multicast and this
is the only multicast whose tree is allowed to use edges of the ring. To achieve this each request of
C has to pass various tests. These tests guarantee that the following additional invariants are
maintained.

(I2) No two request nodes of accepted requests belong to the same square.
(I3) No two sources of accepted requests of different multicasts belong to the same ring.
(I4) No two sources of accepted long requests of different multicasts belong to the same

square.
(I5) No two sources of accepted short requests from the same square belong to the same

square.
(I6) No two request nodes of accepted long requests belong to the same square.

Invariant (I6) follow from invariant (I2).

5.2.1. Long requests

The algorithm for long requests decides whether to accept or reject a request in four steps. Each
step rejects the request if certain conditions are not fulfilled. The requests which are not rejected
after step i; i ¼ 1; 2; 3; 4; form a sequence Li:

Whenever the first request of a multicast is added to L2; the algorithm decides whether the
multicast is selected for long requests. This is needed (1) to discard multicasts were the ‘‘local’’
routing causes potential conflicts and (2) to guarantee that latter multicasts have roughly the same
probability of being accepted as earlier ones. A multicast with source s is selected for long requests

if all of the following conditions are fulfilled at the time of the test:

(i) no multicast with source on the ring of s is already selected for short requests;
(ii) no multicast with source in Ss is already selected for long requests;
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(iii) a coin toss with success probability 1=ð4BÞ is successful; and
(iv) if s is in R3 then the largest ring of R3 in Ss is dedicated to sources.

When a multicast becomes selected for long requests, up to two of the rings in Ss are assigned to

the multicast: (a) the ring containing s is assigned to the multicast; and (b) if s is in R3; the largest

ring of R3 in Ss:
The second ring is needed for the following reason: When routing a long request to the border

of Ss the algorithm needs to be able to use any available crossbar row or column. However, if s

belongs to the central region, the ring of s does not intersect all crossbar rows and columns. Thus,

we route the path from the ring of s to the largest ring of R3 and from this ring the algorithm can
connect to any crossbar row or column. To avoid that the connection between the ring of s and

the largest ring of R3 overlaps with any other multicast tree, the two rings are connected along a
‘‘straightline extension’’ of the internal ring assigned to s; which will guarantee that the connection
does not use an edge of a short request (see Section 5.2.2).

However, the connection of s from the central region to the largest ring of R3 overlaps a

crossbar row or column that may be used to connect a request node t0AR3 of a different long
request ðt0; s0Þ to the border. Our algorithm will reject all long requests from a request node in the
square if (i) a request to a source node in the square has been accepted, or (ii) if a long request to a

request node in the square has been accepted. This implies that if a connection from a source in R3

to the largest ring of R3 exists then no further long requests are accepted. Thus, the problem is

restricted to the situation when the long request from a request node in R3 was accepted and

afterwards a request with source in R3 appears. We avoid the intersection by selecting an

appropriate straightline extension connecting a ring of the central region to the largest ring of R3

that avoids the crossbar row or column used by the long request with request node in R3:
We now give the details of the decision algorithm when a request ðt; sÞ arrives. Let G0 be a mesh

such that each square of the original mesh is represented by a vertex in G0 and two vertices
of G0 are connected by an edge if the two corresponding squares are adjacent. Each edge has
capacity B:

1. If a long request with request node or source in St has been added to L3; the algorithm rejects
ðt; sÞ and stops. If a short request with request node in St has been accepted, the algorithm
rejects ðt; sÞ and stops. Otherwise it adds the request to L1:

2. The request ðt; sÞ of L1 is transformed into a request between the two vertices St and Ss of G0;
and then submitted to MC: If MC accepts the transformed request, request ðt; sÞ is added to
L2: In this case MC also returns a route in G0 which corresponds to a sequence of squares in
the original mesh. Otherwise, the request is rejected and the algorithm stops.

3. If the multicast of the request ðt; sÞ in L2 is selected for long requests, the request is added to
L3 and an unassigned ring of the selected region of St is assigned to the multicast of the
request. Otherwise the algorithm rejects the request and stops.

4. If t is not in the central region of St; then ðt; sÞ is added to L4:
If t belongs to the central region of St; and one of rings 4B þ 1;y; 6B in St is dedicated to

request nodes then ðt; sÞ is added to L4 and one of rings 4B þ 1;y; 6B in St dedicated to
request nodes is assigned to the multicast.
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If ðt; sÞ is added to L4 it is accepted. The ring of t is assigned to the multicast of ðt; sÞ and t is
connected to the multicast tree of s: Otherwise the request is rejected and an arbitrary node u on
the assigned ring of the selected region is connected to the multicast tree of s:

Step 4 guarantees that the following invariant is maintained:

(I7) If a request ðt; sÞ is added to L3; then a node of St is connected to s:

We show next how the algorithm routes a request of L3: For each such request s denotes the
source node and v denotes the node of St to which the request is routed, i.e., either v ¼ t or v ¼ u;
where u is a node on the assigned ring of the selected region. For every such request we are given
by MC a path in G0 consisting of a sequence of neighboring squares. Let S1;S2;y;Sp be the

sequence of squares such that S1 ¼ St and Sp contains a node x of the multicast tree of s: If Sp

contains s; let x ¼ s: Otherwise, if Sp contains an accepted request node not in R3; let x be this

node. Otherwise, as we show in Lemma 34, a ring of the selected region was assigned to the
multicast and at least one node on the ring is connected to s: In this case let x be this node.

Each request of L3 is routed from v to the border between S1 and S2; from there to the border
between S2 and S3 and so forth, until finally to the border between Sp	1 and Sp and from there to

x: Let P denote the resulting path from v to x: We describe next each step in detail.
To route paths between two neighboring squares we reserve the crossbar of rows 6B þ 1;y; 7B

and columns 6B þ 1;y; 7B: All rows and columns in the crossbar cross the central region of the
square. By Lemma 34 there is an unassigned crossbar row resp. column for each accepted request.

Case 1: From v to the border between S1 and S2: Wlog the border between S1 and S2 is a row. We
assign an unassigned crossbar column and the ring of v to the multicast.

If v does not belong to the central region, we route P along the ring of v until it reaches the point
on its assigned crossbar column closest to the border. At this point P is routed along the assigned
column until it reaches the border.

If v belongs to the central region, we route P on the ring of v until a corner of the ring is

reached. There P continues straight to the assigned ring of R3: From the assigned ring of R3 we
continue as above.

Case 2: From one border of a square to another border of the square: Wlog the entering border is
a column and the exiting border is a row. One unassigned ring of the selected region is assigned to
the multicast. We additionally assign one of the unassigned crossbar columns between the current
square and the next square to P:

Path P follows the entering row until it intersects the assigned ring. Then P is routed along the
ring until it reaches the intersection point with the assigned column closest to the exiting border.
There P switches to the assigned column until it reaches the border.

Case 3: From the border of Sp to the node x: Wlog the border between Sp	1 and Sp is a row.

There are three cases to consider: (i) x ¼ s; (ii) xeR3 is a request node of an accepted request of
the multicast, or (iii) x is a node connected to s that belongs to a ring of the selected region
assigned to the multicast.

(i) If s does not belong to R3; we route P along the entering column until the ring of s is reached.

At this point P is routed along the ring of s to s: If s belongs to R3; P follows the entering
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column until the largest ring of R3 is reached. Then, P is routed along this ring until it reaches
a point from which a row or column is available that (1) connects straight to a corner of the
ring of s and (2) does not intersect any existing multicast tree. By Lemma 34 such a row or
column exists. Path P routes along this row or column to the ring of s and along the ring of s

to s:
(ii) When the request at xeR3 was accepted, the ring of x was assigned to the multicast. We route

P along the entering column until the ring of x is reached. At this point P is routed along the
ring of x to x:

(iii) We route P along the entering column until the assigned ring of the selected region is reached.
At this point P is routed along the ring to x:

We need to show that this routing is always possible. We first show two properties of MC:

Lemma 31. The maximum number of paths routed by MC between two adjacent squares is B:

Proof. Each edge in G0 has capacity B and MC does not violate the capacity constraints. &

We say a path in G0 is routed through a square S if S is an internal node of the path.

Lemma 32. Let S be a square. There are at most 2B paths of MC routed through S: If a request node
of a request in L2 belongs to S; then at most 2B 	 1 paths of MC are routed through S:

Proof. Every path routed through a square consumes two units of bandwidth on the edges
incident to the vertex of G0 associated with the square. Additionally, a long request consumes one
unit of bandwidth. The overall bandwidth on the edges incident to a vertex of G0 is 4B: &

We prove with the next two lemma that all paths constructed for different multicasts are edge-
disjoint.

Lemma 33. Invariants (I4) and (I6) are maintained.

Proof. Condition (ii) of being selected for long requests guarantees that invariant (I4) is
maintained. Step 1 of the algorithm guarantees invariant (I6). &

Lemma 34. Let ðt; sÞ be a request of L3 and let ðv;xÞ be the corresponding pair of nodes that has to

be connected by a path. Then the above algorithm succeeds in constructing a path from v to x:
Furthermore, this path does not share any edge with paths constructed for requests in L3 for

different multicasts.

Proof. We first show that the algorithm succeeds in constructing a path from v to x: We need to
show that (a) whenever the algorithm tries to assign an unassigned ring of the selected region to

the multicast, such a ring is available; (b) if seSp and no request node of this multicast in R1 or R2

was accepted then s is connected to a node x on a ring of the selected region of Sp that is assigned
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to the multicast; (c) whenever the algorithm tries to assign an unassigned column or row between
two neighboring squares, such a column or row is available; (d) whenever the algorithm tries to

connect the largest ring of R3 with vertex s in R3; such connection is possible without overlapping
with a different multicast tree.

(a) The selected region consists of 2B rings. The algorithm tries to assign a ring of the selected
region for each request of L3 with request node in the square and for each request routed through
a square. Step (1) of the algorithm guarantees that at most one long request with request node in a
square belongs to L3: If this happens, Lemma 32 shows that at most 2B 	 1 paths are routed
through the square, otherwise at most 2B paths are routed through the square. Thus, in either case
there are enough rings in the selected region.

(b) If seSp but MC routed the path from St to Sp; then MC connected Sp to Ss during an earlier

request. Thus, an earlier request ðt0; sÞ of the same multicast was added to L2 and, since the
multicast is selected for long requests, was also added to L3: Thus, a ring r of the selected region
of Sp is assigned to the multicast. If ðt0; sÞAL3\L4; then a node u of r is connected to s: If

ðt0; sÞAL4; then by assumption t0AR3: Thus, the crossbar row or column on the path from t0 to
the border of Sp also contains a node of r:

(c) The crossbar consists of B rows and columns. By Lemma 31 there are at most B requests
that have to cross the border between any two neighboring squares. Thus, it is guaranteed that
whenever a path needs to be routed between two neighboring squares an unassigned row or
column is available.

(d) The ring of s has at least one corner, and thus there are at least two possible rows and two

possible columns through which the largest ring of R3 can be connected with the ring of s: At most

one long request ðt0; s0Þ with t0 in R3 has been accepted in Ss; potentially using one of these
crossbar rows or columns. Thus, there are still at least three possible ways to connect to the ring of
s:

Let S be a square. We show next that the path from v to x does not share any edge in S with
paths constructed for requests in L3 for different multicasts. The lemma follows.

Note first that no ring of S shares an edge with a crossbar row or column or a straightline
segment connecting two rings. To complete the proof that no two paths of different multicasts
share an edge in S; it then suffices to show that the rings of the two paths are edge-disjoint and
that the straightline segments of the two paths are edge-disjoint. The straightline segments connect
the various rings of a path and a ring with the border of S:

A path that is routed through S consists of an entering crossbar row or column, a part of a ring
in the selected region, and a departing crossbar row or column. Both crossbar pieces go from the
border to the selected region. By points (a) and (c) and the observation that the straightline

extensions belong to R3; which is in this case not the selection region, all these three pieces are
disjoint from the paths used by any other request path with edges in S: Thus, any path routed
through S is edge-disjoint from any path of a different multicast in S:

We are left with showing that no two paths of long requests starting or ending in S share an
edge in S: Let P and P0 be two such paths belonging to different multicasts and let y and y0 be their
endpoints in S: By invariants (I4) and (I6), y and y0 can only be a source node and a non-source
node. Wlog., y is a source and y0 is a non-source node. Node y belongs to a ring that is assigned to
sources and does not belong to the selected region, node y0 either belongs to the selected region or
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to a ring that is assigned to requests. In either case, the rings of y and of y0 are edge-disjoint.

Furthermore, the largest ring of R3 might have been assigned to path P and in this case is

dedicated to sources. A different ring of R3; which is dedicated to request nodes, might have been
assigned to path P0: Again these rings are edge-disjoint.

By point (c) the crossbar rows or columns assigned to P and P0 are different and, thus, edge-
disjoint. Since the straightline extensions start at different rings, they are edge-disjoint. We are left
to show that the straightline extensions connecting the rings assigned to y and y0 are edge-disjoint

with the crossbar rows or columns used in P and P0: If neither y nor y0 belong to R3; no

straightline extension is necessary. If only one between y and y0 belongs to R3; one straightline

extension exists, belonging completely to R3; and the crossbar row or column of the other path

does not reach R3: Thus, of P and P0 are edge-disjoint. If both y and y0 belong to R3; note that by
Step 1 P0 was accepted and routed before P: By point (d) above the straightline extension of P

does not overlap with P0:
It follows that P and P0 are edge-disjoint. &

5.2.2. Short requests

Recall that a request ðt; sÞ is short if a node x in St belongs to the multicast tree of s: The
algorithm for short requests decides whether to accept or reject a request in three steps. Each step
rejects the request if certain conditions are not fulfilled. The requests which are not rejected after
step i; i ¼ 1; 2; 3 form a sequence Si:

Whenever the first request with St ¼ Ss of a multicast is added to S2; the algorithm decides
whether the multicast is selected for short requests. Note that this decision will only affect short
requests with St ¼ Ss; other short requests of the same multicast are accepted or rejected
independent of this decision.

A multicast with source s is selected for short requests if all of the following conditions are
fulfilled at the time of the test:

(i) no short request of a multicast with source in Ss has been added to S2;
(ii) a coin toss with success probability 1

2
is successful.

Whenever a multicast is selected for short requests, the ring of s is assigned to the multicast.
In the following let y denote a node of St that belongs to the multicast tree of s: Note that y ¼ s

is possible. The decision part of the algorithm for short requests consists of three steps:

1. (a) If a short request with request node in St has been accepted then reject ðt; sÞ and stop. (b) If
a long request with request node in St has been added to L3; reject ðt; sÞ and stop. (c) If a long
request with source in St has been added to L3; reject ðt; sÞ and stop. Otherwise add ðt; sÞ to
S1:

2. If either t or y; but not both, is in the central region, the other vertex is not in R3; and ring
4B þ 1 to 6B of St are all dedicated to sources, then reject ðt; sÞ and stop. Otherwise add ðt; sÞ to
S2:

3. If StaSs or if St ¼ Ss and the multicast with source s is selected for short requests, then add
ðt; sÞ to S3: Otherwise reject ðt; sÞ and stop.
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Accept every request ðt; sÞ in S3 and assign the ring of t to the multicast. If either t or y; but

not both, belong to the central region of St; and the other vertex does not belong to R3; assign
one of rings 4B þ 1 to 6B of St dedicated to requests to the multicast of s:

We describe next the routing part of the algorithm. Let P denote the path used by an accepted
request ðt; sÞ to connect t to y: If t and y belong to the same ring, simply connect them by a path
along the ring.

If t and y do not belong to the same ring, let a denote the vertex of ft; yg that belongs to a ring
of St with larger index than the other vertex. Let b denote the other vertex. If a is outside the
central region then P starts at a and follows the ring containing a until a corner of the ring is
reached. Then, P continues along a straightline extension of the ring to the ring of b and from
there along the ring of b to b:

If a is in the central region and b is not, then P starts at a; follows the ring of a until a corner of

the ring is reached. There P continue straight to the ring in the external 2B rings of R3 assigned to
the multicast. Then, path P continues as described above, i.e., it routes to a corner of the ring,
extends straight from there until it reaches the ring of b; and follows the ring of b to b:

If both a and b belong to the central region, P is routed from a along the ring of a until it
reaches a corner of the ring. From there it continues straight until it reaches the ring of b and it
follows the ring of b to b:

Lemma 35. Invariant (I1), (I2), (I3), and (I5) hold.

Proof. Step 1(a) and 1(b) of the algorithm for short requests and step 1 of the algorithm for long
requests ensure that invariant (I2) holds.

Condition (i) and (ii) of being selected for a long request and condition (i) of being selected for a
short request ensure invariant (I3).

Condition (i) of being selected for a short request ensure invariant (I5).
Finally, we show that invariant (I1) holds. The routing phase guarantees that edges on a ring

are only used by the multicast to whom the ring is assigned. Thus, we need to show that each ring
is assigned to at most one multicast. A ring is assigned to a multicast during request ðt; sÞ (a) if it
contains s; (b) if it contains t; (c) if it belongs to the selected region, (d) if it is the largest ring of Ss

and dedicated to sources or, (e) if it is one of rings 4B þ 1 to 6B in St and dedicated to requests.
During a request ðt; sÞ a type (c) assignment is only done if the ring was not previously assigned.

Thus, we only need to show that type (a), (b), (d), and (e) assignments do not assign previously
assigned rings. Recall that each ring is either dedicated to a source or to a request node. A request
is rejected if its source lies on a ring dedicated to request nodes or its request node lies on a ring
dedicated to sources and its source does not lie on this ring. In the following let r denote the ring
that is assigned.

Type (a): The ring r of s is dedicated to sources. When the ring r of s is assigned to the multicast
with source s; the multicast with source s is selected for long or short requests. If it becomes
selected for long requests, by condition (i) and (ii) for selection for long requests no multicast with
source on r is already selected for short or long requests. If the multicast becomes selected for
short requests, note that Ss ¼ St: By condition (i) for selection for short requests and step 1c of the
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algorithm for short requests no multicast with source in Ss is already selected for short or long
requests. Thus, r was not assigned to any other multicast with source on r: Furthermore, r does
not belong to the selected region. Thus, r has not been assigned because of type (a), (b), (c), or (e)
assignments. Finally a type (d) assignment can happen only if a previous source of a long request
belongs to Ss: This is impossible by condition (ii) of being selected for a long request if the current
request ðt; sÞ is a long request, and by step (1c) of the algorithm for short requests if the current
request ðt; sÞ is a short request.

Type (b): The ring r is dedicated to request nodes and does not belong to the selected region.
Thus, r was not previously assigned with type (a), (c), and (d) assignments. Since ðt; sÞ is an
accepted short request, no earlier request with request node in St was accepted by invariant (I2).
Thus, r was not previously assigned by type (b) or (e) assignments.

Type (d): In this case ring r belongs to Ss and is dedicated to sources. Furthermore, sAR3; i.e.,

R3 is not selected and the current multicast is selected for long requests. It follows that no
multicast with source in Ss is already selected for long requests and no multicast with source on r
was previously selected. The former implies that no type (d) assignment has happened to r before,
the latter implies that no type (a) assignment has happened to r before. Since r does not belong to
the selected region and is dedicated to sources, type (b), (c), and (e) assignments are not possible.

Type (e): In this case ring r belongs to St and is dedicated to request nodes. Furthermore, R3 is

not selected and tAR3: It follows that type (a), (c), and (d) assignments are not possible. By
invariant (I2) no earlier request with request node in St was accepted. Thus, no previous type (b)
or (e) assignment can have occurred. &

Lemma 36. No two paths constructed for different multicasts share an edge.

Proof. Let S be a square. We show that no two paths P and P0 constructed for different multicasts
share an edge in S: By Lemma 34 no two paths assigned to long requests share an edge. Thus, we
can assume that P is a path constructed for a short request. Let ðt; sÞ be the request leading to the
construction of P and let ðt0; s0Þ be the request leading to the construction of P0:

By step (1a) of the algorithm, only one short request is accepted in a square. By step (1b) of the
algorithm, if a long request from a request node in a square has been added to L3; no short
request from that square is accepted. By step (1c) of the algorithm if a long request with source
node in a square was added to L3; no short request from that square is accepted. Thus, it follows
that when ðt; sÞ is accepted, no previously accepted request has either its source or its request node
in St: Thus, either P0 routes through St or ðt0; s0Þ is a long request accepted after ðt; sÞ: By step 1 of
the algorithm for long requests it additionally follows that StaSt0 ; i.e., that St ¼ Ss0 :

Lemma 35 shows that we maintain invariant (I1), i.e., the edges of a given ring are used by at
most one multicast tree. Thus, no two different multicast trees share an edge on a ring. As argued
in Lemma 34, no ring of S shares an edge with a crossbar row or column or a straightline segment
connecting two rings.

We are left with proving that the subpaths of P0 used to connect the (at most 2) rings of P0 and
the border(s) of the square are edge-disjoint with the (at most 2) subpaths of P that connect the (at
most 3) rings used by P:
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Each subpath used by P is a straightline extension either (a) from a corner of a ring outside the
central region to a more external ring, (b) from a corner of a ring of the central region to a ring of

R3 with smaller index, or (c) from a corner of a ring of the central region to another ring of the
central region. Each subpath used by P0 is either (i) a straightline extension from a corner of a ring

of R3 to ring 4B þ 1; or (ii) a crossbar row or column from a vertex of ring 4B þ 1 or of a ring

outside R3 to the border of the square. Since they start from different rings, every type (i) subpath
of P0 is edge-disjoint with all type (a), (b), or (c) subpaths used by P: Every type (ii) subpath of P0

is edge disjoint with any type (a) subpath of P; since a type (a) subpath does not use edges on the
crossbar. Every type (ii) subpath of P0 is also edge-disjoint with any type (b) or (c) subpath of P;

since type (b) or (c) subpaths only use edges with both endpoints in R3:
Thus, P and P0 are edge-disjoint. &

5.2.3. The analysis
Let r ¼ log nðlog n þ log logMÞlogM: Recall that MC achieves a competitive ratio of OðrÞ:

We prove in this section that the expected number of requests accepted by the second stage of the
algorithm is an Oðr log nÞ fraction of OPTðCÞ; for any possible set C: Together with Lemma 30 it

follows that our algorithm is Oðr log nÞ ¼ Oðlog2 nðlog n þ log logMÞlogMÞ competitive.
Since

jOPTðCÞj ¼ jOPTðCÞ-L0j þ jOPTðCÞ-S0j
¼ jOPTðCÞ-ððL0\L1Þ,ðS0\S1ÞÞj þ jOPTðCÞ-L1j

þ jOPTðCÞ-S1j
it suffices to show the following results:

jOPTðCÞ-ððL0\L1Þ,ðS0\S1ÞÞjp48 log2 nE½jONðCÞj� ðLemma 39Þ;
jOPTðCÞ-L1jpOðr log nÞE½jONðCÞj� ðLemma 40Þ; and

jOPTðCÞ-S1jpOðlog2 nÞE½jONðCÞj� ðLemma 42Þ:
We first need to show the following claim. We assume here that each node can receive at most one
request per multicast.

Claim 37. At most 4 log2 n requests with request node in a given square can be accepted in a solution.

Proof. Each node in a square is incident to four edges and thus can belong to at most four

multicast trees. Thus at most 4 log2 n requests with request node in a square can be accepted by a
solution. &

Claim 38. Every request of L3 is added to L4 with probability at least 1
2
; i.e., E½jL4j�XjL3j=2:

Proof. Let ðt; sÞ be such a request of L3: By Step 4 of the algorithm for long requests, ðt; sÞ is not
added to L4 if t belongs to the central region and rings 4B þ 1 to 6B are all dedicated to sources.
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If t belongs to R3;R3 is not the selected region, and thus every ring of R3 is dedicated to request

nodes with probability 1
2
: &

Lemma 39. jOPTðCÞ-ððL0\L1Þ,ðS0\S1ÞÞjp4 log2 nE½jONðCÞj�:

Proof. We first show that jOPTðCÞ-ðL0\L1Þjp24 log2 nE½jONðCÞj�:
A request ðt; sÞ of L0 is not added to L1 because (i) a long request with request node in St was

added to L3 or (ii) a long request with source in St was added to L3 or (iii) a short request with
request node in St was accepted. Consider the following charging from long requests in L0\L1 to
squares of the mesh: (A) If a request ðt; sÞ of L0 was not added to L1 because situation (i) or (iii)
arose, the request is charged to St: (B) If ðt; sÞ was not added because a type (ii) request ðt0; s0Þ was

added to L3; we charge ðt; sÞ to St0 : Claim 37 shows that there are at most 4 log2 n type (A)

charges and at most 4 log2 n type (B) charges to a given square.
Let q be the number of squares to which at least one request of L0\L1 is charged. Then

jOPTðCÞ-ðL0\L1Þjp8 log2 nq: It suffices to prove qp3E½jONðCÞj�:
Every square with a type (A) charge contains the request node of an accepted request of C:

Every square with a type (B) charge contains the request node of a request in L3: By Claim 38,
jL3jp2E½jONðCÞj�: Thus, qpjONðCÞj þ 2E½jONðCÞj�:

Then, jOPTðCÞ-ðL0\L1Þp8 log2 nqp24 log2 nE½jONðCÞj�
The same argument applies to S0\S1: &

Lemma 40. jOPTðCÞ-L1jpOðr log nÞE½jONðCÞj�:

Proof. The requests of L1 are transformed into requests on G0; giving rise to a request sequence
L1;G0 submitted to MC: The bandwidth on M is a factor of 13 larger than the bandwidth on G0:
On the request sequence L1;G0 we compare MC on G0 with an optimum algorithm on a mesh G00

whose topology is identical to G0 and whose edge capacity is a factor of 13 larger. Then we
compare the optimum algorithm on G00 with the request sequence L1;G0 with the optimum

algorithm on M with the request sequence L1: Note that ONMCðL1;G0 Þ ¼ L2:
The same arguments as in [AAP93,KT95] show that jOPTðL1;G00 ÞjpOðrÞE½jONðL1;G0 Þj� ¼

OðrÞE½jL2j�:
Note that jOPTðL1;G00 jXjOPTðL1Þj; since routing requests on G00 is identical to routing

requests in M where all edges inside a square have infinite capacity. Thus,

jOPTðCÞ-L1jpjOPTðL1Þj ¼ OðrÞE½jL2j�:
Claim 41 below shows that jL2jpOðlog nÞE½jL3j�: From Claim 38 we obtain that
jL3jp2E½jL4j�: Since jL4jpjONðCÞj; this concludes the proof of the lemma. &

Claim 41. jL2jpOðlog nÞE½jL3j�:

Proof. A request of L2 is added to L3 if its multicast is selected for long requests. We show that a
multicast is selected for long requests with probability Oð1=log nÞ: This shows the claim.
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A multicast is selected for long requests if conditions (i)–(iv) hold. Let r be the ring of the source
s of the multicast. We bound next the probability that each condition holds.

Condition (i): The first short request with source on r added to S2 is selected for short requests

with probability at most 1
2
: None of the short requests with source on r added later to S2 can

become selected for short requests. Thus, condition (i) that no source on r is already selected for

short requests holds with probability at least 1
2
:

Condition (ii): The total capacity of edges incident to Ss is 4B: Thus there exist at most 4B

multicasts with source in Ss in L2: Each of them is selected with probability at most 1=ð4BÞ: Thus

the probability that condition (ii) holds, i.e., that none of them is selected, is at least ð1 	
1=ð4BÞÞ4B

X1=e:
Condition (iii): The coin toss is successful with probability 1=ð4BÞ:
Condition (iv): The largest ring of R3 in Ss is dedicated to sources with probability 1

2
:

Thus a multicast is selected for long requests with probability at least
1=ð16eBÞ ¼ Oð1=log nÞ: &

Lemma 42. jOPTðCÞ-S1j ¼ Oðlog2nÞE½jONðCÞj�:

Proof. Since jOPTðCÞ-S1j ¼ jOPTðCÞ-ðS1\S3Þj þ jOPTðCÞ-S3j and
jOPTðCÞ-S3jpjONðCÞj it suffices to show

jOPTðCÞ-ðS1\S3Þjp32 log2nE½jONðCÞj�:

Let S be a square and let C-S denote the sequence C restricted to the requests with either request
or source node in S: We show that for each square S that

jOPTðC-SÞ-ðS1\S3Þjp16 log2nE½jONðCÞ-Sj�:

Since

jOPTðCÞ-ðS1\S3Þjp
X

S

jOPTðC-SÞ-ðS1\S3Þj

p
X

S

16 log2nE½jONðCÞ-Sj�p32 log2E½jONðCÞj�:

By Claim 37,

jOPTðC-SÞ-ðS1\S3ÞjpjOPTðC-SÞjp4 log2n:

It suffices to show that

ð�Þ For each square S with S1-Sa|; E½jONðCÞ-Sj�X1
4
: Consider the first request ðt; sÞ of

S1-S: It is added to S2 if t and y either both belong to the central region or both not belong to
the central region. Otherwise, the request is added to S2 if at least one of rings 4B þ 1 to 6B is

dedicated to request nodes. This happens with probability at least 1
2
:

If yas; then the request is added to S3 and the claim is proved. If y ¼ s; then the request is
added to S3 if the multicast is selected for short requests. If Condition (i) of being selected for
short request is not satisfied, there exists a short request ðt0; s0Þ of S2 with Ss0 ¼ S for which
Condition (i) of being selected for short requests was satisfied, that has been added to S3 with
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probability 1
2
: If Condition (i) of being selected for short requests holds for source s; then ðt; sÞ is

added to S3 with probability 1
2
: Thus, with probability 1

2
at least one request of S2 is added to S3:

This shows that if S1-Sa|; then a request of C-S is accepted by the online algorithm with

probability at least 1
4
: &

Lemmas 39, 40 and 42 together prove the following theorem:

Theorem 43. There exists a Oðlog2nðlog n þ log logMÞlogMÞ competitive algorithm for multicast
routing on unit-capacity meshes.

5.3. A lower bound for the online algorithm on meshes

In [GHP98] a lower bound of OðlogðM=uÞlog nÞ against an oblivious adversary is given for the
online multicast algorithm in a tree, where u is the (minimum) edge capacity, M is the number of
multicasts, and n is the size of the tree. We show in the following how to modify the proof to give a
lower bound of OððlogðM=uÞlog nÞ=dÞ in a connected graph whose minimum degree is d: This
gives a polylogarithmic lower bound for a mesh.

We assume first that all demands and all edge capacities are 1 and prove a lower bound of
OðlogM log nÞ: Afterwards we show how to add edge capacities to the proof.

We restrict ourself to the case that
ffiffiffi
n

p
4logM: Let M ¼ M=log n and N ¼ n=log M: Assume

that the nodes are numbered with consecutive numbers from 0 to n 	 1 such that the node with
minimum degree is labeled 0. Consider the following sequence of multicast requests. There are
log N phases. In the following we describe phase i; with 1piplog N: In each phase the adversary
generates M new multicasts. Each multicast has source 0. Its requests consists of log M sets. The

first set of requests consists of the nodes 1 to 2i: Then the adversary flips a coin and terminates the

multicast with probability 1
2
: The jth set of requests consists of nodes 2i � ð j 	 1Þ þ 1 to 2i � j:

After processing all M multicasts a new phase starts.
Let cðiÞ be the capacity on any edge incident to node 0 used by the online algorithm during

phase i: Also, let pðiÞ be the profit obtained by the online algorithm during the ith phase. We use
c�ðiÞ and p�ðiÞ to denote the corresponding quantities for the optimal algorithm.

By contradiction we show below that there exists a phase k such thatP
1pipk E½ pðiÞ�p2kþ1d=log N: The adversary stops the sequence of requests after this phase k:

Claim 8.2 of [GHP98] proves that during phase k the optimal algorithm can obtain a profit of at

least ðlog M=4Þ2k by accepting the multicast with highest profit in this round. This gives a lower
bound of Oððlog M log NÞ=dÞ ¼ O ððlogM log nÞ=dÞ:

We are left with showing that there exists a phase k such that
P

1pipk E½pðiÞ�p2kþ1d=log N:

Assume by contradiction that no such phase exists. Let SðkÞ ¼ ð1
2

kÞ
P

1pipk E½pðiÞ�: Then for all

k;SðkÞ42d=log N; i.e.,
P

1pkplog N SðkÞ42d: ButX
1pkp log N

SðkÞ ¼
X

1pkplog N

ð1
2

kÞ
X

1pipk

E½pðiÞ� ¼
X

1piplog N

E½pðiÞ�=2i	1:

M.R. Henzinger, S. Leonardi / Journal of Computer and System Sciences 66 (2003) 567–611604



Claim 8.1 of [GHP98] shows that E½ pðiÞ�o2iE½cðiÞ�: Since
P

i cðiÞpd; it follows thatP
1pkplog N SðkÞo

P
1piplog N 2E½cðiÞ�p2d; which gives a contradiction.

If the edge capacity is u; each phase is repeated u times. This increases the number of multicasts
by a factor of u: Thus, the same proof as above gives a lower bound of OððlogðM=uÞlog nÞ=dÞ: We
summarize the result in the following theorem.

Theorem 44. No randomized algorithm for online multicast routing on a connected graph with

minimum degree d40 can have a competitive ratio better than OððlogðM=uÞlog nÞ=dÞ even against
an oblivious adversary, where u is the capacity of an edge.

Appendix A. The MC algorithm on tree networks

In a graph with link capacity at least log m the MC algorithm of Goel et al. [GHP98] achieves a
competitive ratio of Oððlog n þ log logMÞðlog n þMÞ log nÞ: In this section we prove that when
MC is applied to trees, has link capacity at least u log m; and is compared with an offline algorithm
with link capacity u; MC’s competitive ratio is Oðlog n þ logMÞ:

Our proof is a minor modification of the proof in [GHP98]: Algorithm MC associates a cost
with each edge in the graph. The algorithm we use differs from the algorithm of [GHP98] only in
the definition of the cost of an edge. For completeness, we give the definitions, the algorithm, and
the slightly modified proof of competitiveness, except for the proofs of three lemma that are
identical to the ones in [GHP98]. Note that our presentation follows very closely the presentation
of [GHP98].

A.1. Definitions and algorithm

Let L ¼ log n þ logM: The MC algorithm consists of LM many virtual algorithms, namely L
virtual algorithms for each multicast group. Let VAi;j denote the jth virtual algorithm associated

with the ith multicast. The goal of VAi;j is to build a tree Ti;j: Tree Ti;j spans some of the nodes

that requested to be added to the ith multicast group and that are already spanned by trees Ti;k;
for koi: A request is first generated at VAi;1; if it immediately gets added to Ti;1; it is passed on to

VAi;2; etc. Virtual algorithm VAi;j can expand its tree Ti;j by adding subtrees. We will refer to these

subtrees as fragments.
Virtual algorithm VAi;j makes decisions on which nodes to add to Ti;j based on the profit it

stores at the nodes. A request at node t to join the ith multicast group gives a profit of one
to VAi;1 at node t and VAi;1 is called. For jX1; virtual algorithm VAi;j first decides whether t

should be added to Ti;j: If t is not added to Ti;j;VAi;j terminates and no further virtual

algorithm is called. If t is added to Ti;j; some of the profit of t and of some other nodes is

used up, i.e., disappears from VAi;j; the remaining profit at t is given to virtual algorithm

VAi;jþ1; and VAi;jþ1 is called. We give the details of VAi;j in Fig. 1. Note that d ¼ dT � 1
6L log n

; with

dT ¼ 1=m:
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The ‘‘real’’ algorithm is shown in Fig. 2. For each multicast group, it randomly chooses one of
the virtual algorithms and implements the construction of the tree built by this virtual algorithm.

The probability of choosing VAi;j is pj ¼ b � 2 j; where b is such that
PL

j¼1 pj ¼ 1:

We finally give the edge cost metric used by MC: The cost metric is deterministic and it is
updated as a result of each new request. An event happens when a profit is propagated from
VAi;j	1 to VAi;j: Let ceðkÞ denote the cost of edge e after the kth event, i.e., when the kth event

occurs, the virtual algorithms use costs ceðk 	 1Þ for making their decision. To define ceðkÞ we first
need to define three other parameters.

Fig. 1. The jth Virtual phase of the ith Real algorithm.
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(1) Let ~ZZ ¼ ðZ1;y; ZMÞ represent the indices of the virtual algorithms chosen for the M
multicasts, and let p~ZZ represent the probability of making this sequence of choices. Since the

random choices of the Real algorithms for different multicasts are independent, p~ZZ ¼
QM

i¼1 pZi
: (2)

The load on an edge is 1=u log m4 times the number of trees it was used in by the real algorithm.

Let lð~ZZÞe ðkÞ represent the load on edge e after the first k events have occurred, where~ZZ represents

the choices made by the Real algorithms. (3) Set m to 4m6 log2 M:
Let ceð0Þ ¼ u for each edge e: Then ceðkÞ is computed as follows:

ceðkÞ ¼ u
X
~ZZ

p~ZZml
ð~ZZÞ
e ðkÞ:

Define X
ði;jÞ
e ðkÞ as (deterministic) indicator variables, with X i;j

e ðkÞ being 1 if edge e is used by VAi;j

during the first k events and 0 otherwise. Now, lð~ZZÞe ðkÞ ¼ ð1=u log mÞ �
PM

i¼1 X
ði;ZiÞ
e ðkÞ; which

implies that

ceðkÞ ¼ u
YM
i¼1

XL

j¼1

pjmX
ði;jÞ
e ðkÞ=u: ðA:1Þ

A.2. Proof of competitiveness

The multicast groups are divided into ‘‘profitable’’ and ‘‘unprofitable’’, and we show the
competitiveness separately for each group. To be precise, we first show (Lemma A.1) that the
online algorithm obtains almost as much profit from profitable groups as the optimal solution.
Then we show that the total profit obtained by the online algorithm can only be poly-
logarithmically smaller than optimal’s profit from unprofitable groups.

Consider the ith multicast group. Let the number of requests satisfied by the optimal offline
algorithm be r�ðiÞ; and let rðiÞ be the profit obtained by the online algorithm. Let w�ðiÞ be the cost
(in the final cost metric) of the tree T�

i used by the optimum algorithm to service multicast group i:

The ith multicast group is profitable if
r�ðiÞ
w�ðiÞXdT ; where dT ¼ 1

mu
: Note that a multicast group

profitable if the optimal’s tree for this multicast group has a high profit to cost ratio in the final
cost metric.

Fig. 2. The Real algorithm for multicast group i:

4The load was 1=u in [GHP98].
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We use the quantities R� and R to represent
PM

i¼1 r�ðiÞ and
PM

i¼1 rðiÞ; respectively. Let P and U

represent the set of profitable and unprofitable multicast groups, respectively. Also, we define
R�

P ¼
P

iAP r�ðiÞ and R�
U ¼

P
iAU r�ðiÞ ¼ R� 	 R�

P:
Consider the quantities Profiti;jðvÞ and Used-Profiti;jðvÞ at the end, i.e., after all requests have

been received. Let Pi;jðvÞ ¼ Profiti;jðvÞ þ Used-Profiti;jðvÞ: The quantity Pi;jðvÞ denotes the profit

consumed by VAi;j at node v: For any set X of vertices, Pi;jðXÞ ¼
P

vAX Pi;jðvÞ: The definitions of

Profiti;j and Used-Profiti;j are similarly extended.

First a technical lemma is needed. When MC is specialized to trees, an Oðlog nÞ factor is saved
over the corresponding Lemma 5.1 of [GHP98].

Lemma A.1. Pi;jðT�
i Þp2w�ðiÞd:

Proof. We first bound the quantity Profiti;jðT�
i Þ: This contribution comes from nodes

in T�
i which do not belong to Ti;j: The profit consumed on these nodes by VAi;j must

be at most w�ðiÞd; else these nodes would have formed a fragment on their own and been added
to Ti;j:

Now we bound Used-Profiti;jðT�
i Þ: This contribution comes from nodes of T�

i that belong to

Ti;j: Since the underlying graph is a tree, the subtree s connecting these nodes in Ti;j is also a

subtree of T�
i :

Assume Used-Profiti;jðsÞXw�ðsÞd: Let vAs be the node with the last request in multicast i

among all nodes in s: When the request at v arrived, the sum Profiti;jðsÞ ¼
P

uAs Profiti;jðuÞ is at

least w�ðsÞd; because Profiti;jðsÞ is the source of Used-Profiti;jðsÞ: Thus, at that time we could

have used at most w�ðsÞd to add s as a fragment. Since the algorithm always tries to create a
fragment using the minimum amount of profit, we have

Used-Profiti;jðsÞpw�ðsÞd: &

The proofs of the following lemma are identical to the proofs of Lemmas 5.2–5.4 of [GHP98]
since they are not affected by the exact definition of ceðkÞ: We therefore state them without proof.
The first lemma shows the competitiveness for the profitable multicast groups. The second lemma
bounds the quantity mR�

U using the sum of the final costs of all edges. We will use it with Lemma

A.7 to relate R�
U with R which is our goal.

The third lemma is a technical lemma need to show Lemma A.7

Lemma A.2. RXR�
P=2:

Lemma A.3. mR�
Up

P
e ce:

Lemma A.4. EðrðiÞÞXðd=2ÞEðwðiÞÞ 	 1
M
; where wðiÞ is the cost paid by the Real algorithm for

multicast group i:

An Oðlog mÞ factor is saved with respect to Lemma 5.5 of [GHP98] that is replaced by the
following:
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Lemma A.5. For all eAEk; ceðkÞ 	 ceðk 	 1Þp1
u

pjceðk 	 1Þ: For the edges eeEk; ceðkÞ ¼ ceðk 	 1Þ:

Proof. The claim is obvious for edges eeEk: For each edge eAEk;X
ði;jÞ
e ðk 	 1Þ ¼ 0 and X

ði;jÞ
e ðkÞ ¼

1: Using Eq. (A.1), it therefore follows that

ceðkÞ 	 ceðk 	 1Þ ¼ pjðmX
ði;jÞ
e ðkÞ=u log m 	 1Þu

Y
i0ai

X
j0

pj0mX
ði0 ;j0Þ
e ðkÞ=u log m

¼ pjðm1=u log m 	 1Þ ceðk 	 1ÞP
j0 pj0mX

ði;j0Þ
e ðk	1Þ=u log m

p pjðm1=u log m 	 1Þceðk 	 1Þ
¼ pjð21=u 	 1Þceðk 	 1Þ:

The last inequality above follows from the fact that
P

j0 pj0mX
ði;j0Þ
e ðk	1Þ=u log m

X
P

j0 pj0 ¼ 1:

Finally note that m1=u log m 	 1 ¼ 2ðlog mÞ=u log m 	 1p1=u; since 2x 	 1px for all x between 0 and
1. &

As a consequence of the new claim of Lemma 5.5, an Oðlog mÞ factor also disappears from the
claim of Lemmas 5.6 and 5.7 of [GHP98]. For completeness we reprove these lemma.

Lemma A.6. 1
u
EðWÞX

P
eðce 	 uÞ:

Proof. Let DeðkÞ ¼ ceðkÞ 	 ceðk 	 1Þ represent the increase in cost on edge e during the kth event.
Then, ce ¼ ceð0Þ þ

P
k DeðkÞ where the summation is over all events. Recall that ceð0Þ ¼ u for all

edges e: Now, let VAik;jk be the virtual algorithm that updates its tree during event k: Lemma A.5

implies thatX
e

ðce 	 uÞpð1=uÞ
X

i

X
j

pj

X
k:ik¼i;jk¼j

X
eAEk

ceðk 	 1Þ:

Using definition of wjðiÞ; we can rewrite this expression as follows:X
e

ðce 	 uÞpð1=uÞ
X

i

X
j

pjwjðiÞ ¼ ð1=uÞ
X

i

EðwðiÞÞ:

Using linearity of expectations,
P

i EðwðiÞÞ ¼ Eð
P

i wiÞÞ; which completes the proof. &

Lemma A.7. 5 dT

d
mEðRÞX

P
e ce:

Proof. We show below, EðRÞX1: Combining this fact with a summation of Lemma A.4 over all
multicast groups, gives

4

d
EðRÞX2

d
EðRÞ þ

XM
i¼1

1

M

 !
XEðWÞ:

Using Lemma A.7, and the fact that mdT u ¼ 1 gives
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X
e

cep
1

u
� 4
d
EðRÞ þ mu ¼ m

4dT

d
EðRÞ þ u

� �
:

To complete the proof, it remains to show that EðRÞXu: For this purpose we show first that the
first u requests are always accepted. Assume for some kou the first k requests have been accepted.
As a result, the load on each edge is no more than k; and the cost of servicing the next request can

be at most mumk=ðu log mÞo2mu: By construction, the profit needed to pay for this cost is at most

mud ¼ mu
1

mu

1

6L log n
¼ 1

3L log n
:

Thus, the unit of profit deposited at the request node is enough to pay for extending the trees of all
VA algorithms dealing with the corresponding multicast group. Hence, this request will be
accepted by the real algorithm as well. In other words, if there are at most u requests generated by
the adversary then the Real MC algorithm accepts them all and has a competitive ratio of 1. Else,
R (and therefore EðRÞÞ is greater than u; which completes the proof of the claim. &

Combining Lemmas A.3 and Lemma A.7 with Lemma A.2, the following result, that implies
the competitiveness of MC; is obtained:

Theorem A.8. R�=EðRÞ ¼ Oððlog n þ logMÞÞ:

In the same way as [GHP98] it is possible to show that the algorithm does not overflow the
available capacities.
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[KT95] J. Kleinberg, È. Tardos, Disjoint paths in densely embedded graphs, in: Proceedings of the 36th Annual

IEEE Symposium on Foundations of Computer Science, Milwaukee, WI, 1995, pp. 52–61.

[LMSPR98] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, A. Rosèn, On-line randomized call-control
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