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Abstract

In this paper, we present a 3D geometric flow designed to segment the main core of fiber tracts in diffusion tensor magnetic res-
onance images. The fundamental assumption of our fiber segmentation technique is that adjacent voxels in a tract have similar prop-
erties of diffusion. The fiber segmentation is carried out with a front propagation algorithm constructed to fill the whole fiber tract.
The front is a 3D surface that evolves with a propagation speed proportional to a measure indicating the similarity of diffusion
between the tensors lying on the surface and their neighbors in the direction of propagation. We use a level set implementation
to assure a stable and accurate evolution of the surface and to handle changes of topology of the surface during the evolution proc-
ess. The fiber tract segmentation method does not need a regularized tensor field since the surface is automatically smoothed as it
propagates. The smoothing is done by an intrinsic surface force, based on the minimal principal curvature. This segmentation can be
used for obtaining quantitative measures of the diffusion in the fiber tracts and it can also be used for white matter registration and

for surgical planning.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion tensor magnetic resonance imaging (DT-
MRI) is a new modality that permits non-invasive quan-
tification of the water diffusion in living tissues. The dif-
fusion tensor (DT) provides information about the
intensity of the water diffusion in any direction at a cer-
tain point. The water diffusion in the brain is highly af-
fected by its cellular organization. In particular, the
axonal cell membranes and myelin sheaths are the main
components restricting water mobility (Beaulieu, 2002).
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Consequently, the measured DT becomes highly aniso-
tropic and oriented in areas of compact nerve fiber
organization, providing an indirect way of identifying fi-
ber tracts. Analyzing such images can lead to a better
understanding of white matter diseases, such as multiple
sclerosis (Filippi et al., 2001; Maldjian and Grossman,
2001), schizophrenia (Lim et al., 1999; Foong et al.,
2000) and dyslexia (Klingberg et al., 2000).

The DT is normally interpreted by calculating its
eigenvalues and eigenvectors, the eigenvector corre-
sponding to the highest eigenvalue describes the direc-
tion of the principal diffusion and the eigenvalue is a
quantitative measure of the diffusion in that direction.
Most of the existing methods for tracking fibers rely
on the direction of principal diffusion to create integral
curves describing the fiber paths (Conturo et al., 1999;
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Vemuri et al., 2001; Basser et al., 2000). Other methods
use a probabilistic approach to explore more of the
information contained in the diffusion tensor like, for
example Hagmann et al. (2003), who consider the tensor
as a probability distribution. Parker et al. (2001) have
used level set theory, applied using fast marching meth-
ods, to find the connection paths between different brain
regions. Campbell et al. (2002) have also used level set
theory to implement a geometrical flow to track the fi-
bers. They mostly focus on the problem of preventing
leakage from the thin tubular structure that represents
the fibers, by using flux maximizing flows.

Batchelor et al. (2001) use more of the tensor informa-
tion by solving the diffusion equation iteratively. The
method creates paths that originate from a chosen
seed-point and can be considered as probability meas-
ures of a connection. A similar approach is presented
by O’Donnell et al. (2002), where they find the steady
state of the diffusion equation to create a flux vector field.
In the same paper they show how the inverse diffusion
tensor can define a Riemannian metric that is used to find
geodesic paths that can be interpreted as fiber tracts.

The above methods focus on finding individual fiber
paths whereas we have chosen to search for regions that
correspond to certain fiber tracts, following the same
idea as Tench et al. (2002). Tench segments regions by
finding trajectories of individual fibers and then identify-
ing voxels that belong to the same structure. The identi-
fication is based on the similarity of the shape of the
trajectory paths. Zhukov et al. (2003) also focus on seg-
menting white matter regions from DT-MRI instead of
on fiber tracts. They present new invariants of the tensor
such as an anisotropy measure of the tensor that is rota-
tionally invariant and not dependent on the computa-
tion of eigenvalues. These invariants are then used to
calculate scalar volumes, one that represents the total
diffusivity within a voxel and another that describes
the anisotropy. On these scalar maps he segments re-
gions with similar diffusion properties and then he ap-
plies a level set method to obtain a smooth
segmentation. A drawback with Zhukov’s method is
that he only uses a scalar measure and ignores the direc-
tional information.

Very recent papers have addressed the problem of re-
gion based segmentation of DT-MRI using level set
methods (Wang and Vemuri, 2004; Rousson et al.,
2004; Feddern et al., 2003). The method presented by
Wang and Vemuri (2004) uses the whole tensor informa-
tion to define a region based force as proposed by Para-
gios and Deriche (1999). Although interesting, the
method does not solve the problem of segmenting fiber
tracts as a whole. Fiber tracts can not be seen as one re-
gion due to changes of the properties of the diffusion
throughout the tracts.

Our method is using a 3D geometric flow designed to
evolve inside the fiber tracts. By fiber tracts we mean re-

gions containing compact and coherent bundles of ax-
ons. These can be tubular structures such as the
cortico spinal tract as well as planar structures such as
the corpus callosum. The white matter of the brain con-
sists of all such different tracts. We segment these tracts
by assuming that adjacent voxels in a tract have similar
properties of diffusion. Therefore, we will measure the
similarity of diffusion between voxels and then using this
similarity as a front propagation speed. This means that
the propagation speed of the front in a certain direction
is proportional to the similarity between the tensors ly-
ing on the surface and their neighbors in that direction
of propagation. The implementation of the geometric
flow permits a local comparison between the voxels in
the direction of the front propagation. When the fiber
tracts turn, bend and change direction, this local com-
parison is important since the directional properties of
the diffusion will not be similar in different locations
along the fiber tract. The geometric flow does not only
manage to evolve along the tracts but also towards the
sides of it to fill it completely. Traditional methods of
tractography often have a problem of filling whole tracts
since these methods are very dependent on the initial
points and only evolve along the fibers in the direction
of diffusion. The measure of similarity that we use to
compare the diffusion is based on the whole diffusion
tensor, which helps to avoid problems that occur when
only the principal direction is used. Due to noise in
the acquisition, the order of the eigenvalues can some-
times be swapped but the measure of similarity that
we use, the tensor scalar product (TSP), uses all possible
combinations of the eigenvectors and an eventual swap-
ping of principal directions will not influence the result.
The influence of noise will thereby be diminished and it
is also of importance for coping with the problem of fi-
ber crossings where the principal direction loses its sig-
nificance (Basser and Pajevic, 2000). As mentioned
before, it is very important that we use the directional
information as well as the quantitative information
about the diffusion. In many regions of the brain, fiber
tracts pass close to each other and if only a scalar value
such as an anisotropy measure is used nothing will sep-
arate the regions from each other. Using the full tensor
is necessary for satisfying results and it has already been
shown for regularization problems (Chefd’hotel et al.,
2002; Coulon et al., 2004; Tschumperle and Deriche,
2001; Vemuri et al., 2001).

The front propagation is implemented using the level
set method as proposed by Osher and Sethian (1988). It
assures a stable and accurate evolution. It handles natu-
ral topology changes and provides an elegant tool for
smoothing the segmented tracts. While many methods
demand a regularized tensor field, our geometric flow
regularizes the 3D surface as it evolves inside the fiber
tracts so that a regularized tensor field is not needed.
This is made by a curvature dependent smoothing term
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which is called the minimal principal curvature. It is
adapted for thin tubular structures as presented by Lor-
igo et al. (1999) for segmentation of blood vessels from
MR angiography, and by not considering each tensor
individually but also looking at its surroundings.

In neuroscience, various problems can benefit from
such segmentation of the fiber tracts for applications
such as getting a quantitative measure of the diffusion
inside the chosen fiber tracts, white matter registration
and surgical planning.

The paper is organized as follows. First we briefly
present the concept of diffusion tensors and basic theo-
ries on front propagation with level set implementation.
We then show how to use similarity measures for diffu-
sion tensors to propagate a surface and how this can be
used for fiber tract segmentation. The validation is made
on synthetic images and we show segmentation results
on real DT-MRI of the brains of two healthy subjects.

2. Background theory

2.1. Diffusion tensor imaging and tensor similarity
measures

DT-MRI permits in vivo measures of the self-diffu-
sion of water in living tissues. The tissue structure affects
the Brownian motion of the water molecules which leads
to an anisotropic diffusion that is measured by diffusion
weighted MRI along at least six independent axes. A ref-
erence image without diffusion weighting is also re-
quired. As a second order approximation, the
measured anisotropic motion can be modelled by an
anisotropic Gaussian, that can be parameterized by
the diffusion tensor in each voxel (Basser et al., 1994)
to create a 3D field of diffusion tensors.

The DT is a 3 x 3 symmetric, semi-positive definite
matrix. By diagonalizing the DT we obtain the eigen-
values (41, 4>, A3, where 41 = 4, = A3) and the corre-
sponding eigenvectors (&;,&,,¢é3). Since the tensor is
symmetric and semi-positive definite the eigenvalues
are always non-negative. However, noise can destroy
the semi-positivity of the measured DTs. The DT can
be described in terms of its eigenvalues and eigenvectors.

o0 0
D=(&1883)| 0 2 0 |(eee3)". (1)
0 0 i

The largest eigenvalue and its corresponding eigenvector
describe the quantity and direction of the principal
diffusion.

Alexander et al. (1999) have explored many similarity
measures for tensors to perform elastic matching of dif-
fusion tensor images. These measures take both the
magnitudes and the directions of the diffusion into ac-

count. One of the most common measures of similarity
between two tensors is the tensor scalar product (TSP).
This is a measure of the overlap between two tensors:

D] :Dz = TI'aCG(DlDz) = Z Z)»]i)vzj(eliezj)z. (2)
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The TSP is often normalized to avoid influence by the
relative size of the two tensors. This will emphasize the
shape and orientation of the tensor
- D1 . Dz
~ Trace(D;)Trace(D)

NTSP(D;, D,) (3)

Another way of measuring the tensor similarity using
the full tensor information that is also presented by
Alexander et al. (1999), is the tensor difference (TD).

TD(Dy,D,) = /(D1 — D) : (D) — D»), (4)

where ...:... is given as in (2). The TD measures the
difference in size and shape as well as orientation be-
tween the two tensors.

The diffusion in the direction of a unit vector, %, is gi-
ven by the double contraction of the DT with the vector:

d(%) = &Dx. (3)

A way of directly comparing the diffusion between two
tensors is to compare the diffusion in the direction of
all unit vectors on a sphere, X, using the double contrac-
tion. We will call this measure of similarity for integral
similarity (IS).

soo - fm(f 20 o

where d;(%) is the diffusion in direction x for the diffu-
sion tensor D;. The IS gives us a percentage of the com-
mon diffusion for the two tensors.

2.2. Geometric flows and level set implementation

Geometric flows and especially curvature- or curve
shortening flows are becoming more and more impor-
tant regularization tools in computer vision. A curvature
flow is a curve or surface that evolves at each point
along its normal with a velocity depending on the curva-
ture at that point. This process leads to a smoothing of
the curves or surfaces to eliminate the effects of noise.
The theory is well developed for the two dimensional
case and even though some of the properties of the 2D
curve, such as the property of shrinking to a point under
mean curvature flow, do not hold in the 3D case, the
main part of the theories remains valid and works well
for segmentation of 3D objects.

To use the geometric flows for image segmentation,
the evolution of the curve or surface has to depend on
external properties determined by the image features.
A classical speed function to segment gray scale images



226 L. Jonasson et al. | Medical Image Analysis 9 (2005) 223-236

is based on the gradient of the images and goes to zero
when the surface approaches an edge (Caselles et al.,
1997).

A general flow for a 3D closed surface can be de-
scribed as
B remw, )
ot
where F'is an image based speed function, H is an intrin-
sic speed dependent on the curvature of the surface, S is
the surface, N is the normal of the surface and ¢ is the
time.

To solve this time dependent partial differential equa-
tion (PDE) we use the level set method, introduced by
Osher and Sethian (1988), where the evolving surface
is considered as a constant level set of a function of a
higher dimension. By doing this we obtain a numerically
stable algorithm that easily handles topology changes of
the evolving surface. In our case the function of higher
dimension is the signed distance function, ¢(¢), of the
evolving surface. Finally, the evolution of the zero level
set of ¢, which coincides with the surface S(¢), is de-
scribed by

op
T F+H) |V, ®)
3. Method

3.1. Similarity based front propagation

As mentioned in the introduction we propose a front
propagation method that is based on the assumption
that the diffusion is similar between two adjacent voxels
within the same tract. To perform the segmentation a
small initial surface is placed inside the tract we wish
to segment and the surface is then propagated using
the similarity measure in (3). The front propagates into
a voxel with a speed proportional to the similarity be-
tween the diffusion tensor in the voxel and the diffusion
tensors in the adjacent voxels lying inside the fiber. We
define the front propagation speed as

F = l'l'lea,]fl(I\I’TSI)(DI',Di,l)7l\I’TSI)(Di,Di,z))7 (9)

where NTSP is the normalized tensor scalar product as
in (3). D;is the DT in the current voxel and D; _ , are the
DTs in voxels found by following the normal to the sur-
face p voxels backwards from the original voxel 7, see
Fig. 1, and then select the nearest neighbor.

Different measures of similarity such as the TD (4)
and the IS (6) have also been analyzed. Finally we have
found the NTSP most suitable for our purposes. Firstly,
it is dependent on the global shape of the tensor since it
takes into account all eigenvalues and eigenvectors
which is not the case with the other similarity measures.

Fig. 1. Choice of adjacent voxels with respect to the normal of the
surface.

Secondly, since the main objective is to propagate the
surface in the anisotropic regions while avoiding the iso-
tropic regions, we want a high speed, F, in the aniso-
tropic areas and a low speed in the isotropic areas.
For this, the NTSP measure is highly interesting since
only a completely anisotropic tensor with diffusion in
only one direction compared with itself will sum up to
one and the similarity between two isotropic tensors
are low (see Table 1). Thirdly, this similarity measure
is robust with respect to noise. Noise can sometimes
swap the order of the eigenvalues but since the NTSP
combines eigenvalues and eigenvectors independently
of the order, this measure is more stable compared to
other measures.

It is important to notice that the presented flow does
not necessarily evolve in the direction of the diffusion. It
evolves in the direction where the diffusion properties do
not differ too much from the local neighborhood inside
the fiber. This allows the surface to propagate towards
the sides of the fiber tract and thereby segment the whole
tract.

3.2. Regularization

Due to a high level of noise in the DT-MRI a segmen-
tation only based on properties of the diffusion will be
very irregular. To smooth the tracts while segmenting
them we regularize the flow by adding a curvature
dependent speed. Lorigo et al. (1999) introduced the

Table 1
Comparison between similarity measures between different combina-
tions of isotropic (17) and anisotropic (18) tensors

Tensors NTSP 1-TD IS
(Danisotropic,()a Danisotropic,()) O 57 1 1
(Disolropic= Disotropic) 0.33 1 1
(Disotropic, Danisolropic,O) 0.33 0.25 0.54
(Danisotropic,()a Danisotropic,30) 0.51 0.75 0.79
(Danisolrnpic.()a Danisolrnpic.45) 0.46 0.5 0.72
(Danisotropic.O: Danisotropic,QO) 0.36 0 0.64

The normalized tensor scalar product (NTSP), the tensor difference
(TD) and integral similarity (IS). Here Dapisotropic,» represents the
anisotropic tensor with its principal vector rotated n degrees.
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use of a curvature definition from co-dimension 2 flows
on surfaces with a thin, tubular structure. Instead of
using either mean curvature or gaussian curvature,
which normally destroy the tubular structure, they use
the minimal principal curvature which is a combination
of both curvatures. The minimal principal curvature, «,
is given by

k=H—-VH* —K, (10)

where H is the mean curvature and K is the gaussian
curvature. For the definitions of the mean- and gaus-
sian curvature we refer to (Sethian, 1999). This defini-
tion of the curvature smoothes the tubes axially and
not radially, as if they were open curves in a 3D space,
instead of smoothing their tubular form. Thus, this cur-
vature flow satisfies the property of shrinking to a
point while preventing undesirable changes of topol-
ogy. We use this smoothing model for our curvature
dependent smoothing term. The minimum principal
curvature flow does not only smooth tubular structures
but also surfaces in general while allowing smaller
structures to stick out. This makes it possible for a thin
fiber tract to evolve independently away from a larger
structure.
Our geometric flow now has the form

oS
—=(F N. 11
o= (F+n) (1)
This can easily be implemented with the level set
method.

4. Parameters and implementation details

The method has been implemented in Matlab 6.1
(The MathWorks, Inc.) except for the reinitialization
of the signed distance function, which has been imple-
mented in C and compiled with the mex-library, so the
function can be called from Matlab.

4.1. Preserving the signed distance function (SDF)

As mentioned in Section 2.2 the evolving surface is
considered as the zero level set of its SDF, &. Due to lo-
cal dependence of the propagation speed, the evolution
of the other level sets differs from the zero level set. This
creates irregularities that deform @ so it ceases to be a
signed distance function. A correct SDF is crucial to
get a correct and smooth evolution of the surface, since
the calculations of the normals and curvatures depend
directly on the SDF. Therefore, a reinitialization of
the signed distance map is made at every iteration. It
is implemented using the fast marching method to solve
the time dependent PDE (Adalsteinsson and Sethian,
1995):

0 .
% ~ sign(g0)(1 ~ V4. (12)
During the evolution process it is very important to
preserve the SDF to assure a correct computation of
the normals and the minimal principal curvature. If we
do not reinitialize the level set function the propagation
quickly becomes unstable.

Furthermore, we carry out an extension of speed val-
ues from the zero level set to a narrow band to reduce
the perturbations of the SDF. Indeed, closest to the zero
level set we easily get discontinuities since the speed
function can vary a lot between two adjacent voxels. It
is also in this area that a correct SDF is of most impor-
tance, since the exact position of the zero level set is
dependent on the values of the surrounding voxels. To
assure the maintenance of the SDF, the speed is calcu-
lated only on the zero level set and is then transferred
in the direction of the normal to the voxels lying just
next to the zero level set.

4.2. Thresholding

If the speed at one voxel is not equal to zero it will
eventually lead to a propagation of the front at that
voxel, even though the speed might be very small. To
prevent unwanted propagation all speeds inferior to a
certain threshold are set to zero. Thresholding is a very
abrupt method so it risks causing discontinuities in the
propagation. Since it is very important to maintain a
continuous speed, we use the regularized Heaviside
function, defined in (Sussman et al., 1998), to get a
smoother thresholding.

0 ifx<T—cg

Hr(x) = 11 +=L+1Lsin(n(x—T)/e)] if x—T| <,
1 ifx>T+e

(13)

where 7 is the selected threshold and e is equal to 0.1 in
all experiments.

The surface evolution is stopped when the propaga-
tion speed has been sufficiently small for several succes-
sive iterations.

4.3. Weighting the speed terms

The diffusion dependent and the curvature dependent
speed is not always of the same order. To have a satis-
factory regularization without inhibiting the front prop-
agation it is therefore important to set the weighting
factor between them correctly. The curvature term in
(11) is then referred to as axh,

oS
W (F + aK)N, (14)
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where o is the weighting parameter. In all our experi-
ments o is set to 0.1.

Finally, our surface evolution equation has the fol-
lowing form:

Z—f:(HT(F)+ocx)N, (15)

and the evolution of its level set function is

0P

i (Hr(F) + ax)|V|. (16)
In the annex we prove the existence and uniqueness

of a solution for this PDE.

5. Validation and results
5.1. Synthetic tensor fields

Synthetic tensor fields have been created to test the
method. Tensor values for one isotropic and one aniso-
tropic tensor were taken from real data on DT-MRI of
the brain of a healthy subject. The values of the aniso-
tropic tensor have then been manipulated so that the
principal diffusion is in the x-direction. The values of

the isotropic tensor and anisotropic tensor are the
following:

Disotropic = dlag(3a 3a 3) : 10_47 (17)

Dianisotropic = diag(7,2.5,0.4) - 107*. (18)

The values are given in mm?s.

Uniformly distributed random noise is added to the
isotropic tensors so all of them will not be identical,
these are used as a background for the fibers that are
modelled using the anisotropic tensors. To obtain the
desired direction of the anisotropic tensors they are ro-
tated by first multiplying the principal diffusion vector
by a rotation matrix and then projecting the remaining
eigenvectors onto a plane which is orthogonal to the
new principal direction of diffusion. The original eigen-
values are kept and the tensors are then reconstructed
according to (1).

With this method two different 3D tensor fields are
constructed, presented in Fig. 2. The images show the
largest eigenvector of the tensors at a cut along the z-
axis. The first tensor field shows a semicircle to demon-
strate the ability of following a curved fiber tract. The
second tensor field simulates a branching fiber tract.
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Fig. 2. Synthetic DT fields modelling a diverging and a curved fiber tract. The principal directions of diffusion on a cut along the z-axis. (a, c) Before

noise is added. (b, d) After noise is added.
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To make the tensor fields more realistic, noise is
added (Tournier et al., 2002). The six amplitude images
from which the diffusion tensors originally would have
been acquired in DT-MRI are obtained by making the
inverse calculation and then noise is added on the ampli-
tude images. The added noise is an approximation of Ri-
cian noise (Gudbjartsson and Patz, 1995; Henkelman,
1985) as it would be on MR data. Then the tensor
images are recreated. The resulting tensor fields can be
seen in Fig. 2.

The method is tested on the synthetic images with dif-
ferent levels of SNR. We have used a SNR of 8, 16 and
32 on the MR amplitude images as in (Tournier et al.,
2002). To start the segmentation a small initial surface
is placed somewhere inside the synthetic fiber. To give
an idea of suitable thresholds we here present some typ-
ical values of the NTSP between different combinations
of the tensors presented above. In the same table we also
present corresponding values for different similarity
measures.

Correct segmentations were obtained with several dif-
ferent thresholds between 0.45 and 0.5. These thresholds
are used on the real MR data. In Fig. 3, the effects of dif-
ferent choices of thresholds are shown. All synthetic ten-
sor fields used for the segmentation have a SNR = 8.
Even though the synthetic tensor fields are very noisy,
the resulting surfaces are relatively smooth due to our
regularization that is performed as the surface is evolv-
ing. In Fig. 4, the level of regularization is varied. It
shows the segmentation results without regularization
term, with a regularization term set too high and with
an appropriate value of the regularization term.

In Tables 2 and 3, quantitative values for the segmen-
tation results are presented. The value is obtained by
comparing the signed distance function between the con-
tour of the synthetic fiber tract without noise and the
segmented fiber tract when noise is added with
SNR =8, and then calculating the error between the
SDFs at the contours. The tables present the mean(L;)
and maximum(L,.) differences in value between the

Fig. 3. Effects of varying thresholds on the resulting segmentations of synthetic DT fields with SNR =8. (a, d) Segmentation is ideal with
threshold = 0.45. (b, e) Segmentation is too large with threshold = 0.40, (c, f) Segmentation is insufficient with threshold = 0.55.
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Fig. 4. Effects of varying regularization parameter on the resulting segmentations of synthetic DT fields with SNR = 8. (a, d) Ideal regularization
parameter. (b, ) No regularization, the segmentation is too noisy. (c, f) Regularization parameter is set too high and has too high an influence on the

real shape of the tracts. Threshold = 0.45 for all images.

two SDFs. Table 2 shows the results for different thresh-
olds and Table 3 for different weighting of the regulari-
zation parameter. Both tables confirm the visual results
that the best results are obtained for a threshold equal to
0.45 and a weighting factor for the curvature o« = 0.1.

Experiments have also been made with smaller and
larger neighborhood than in (9). For a smaller neighbor-
hood the front propagation becomes too sensitive to
noise. A larger neighborhood, in the sense that we look

Table 3
Table 2 Quantitative values of the segmentation results using different levels of
Quantitative values of the segmentation results for different thresholds regularization
Form Threshold o Max Mean Shape Threshold o Max Mean
Circle 0.40 0.1 2.98 0.56 Circle 0.45 0 2.32 1.07
0.45 0.1 2.1 0.48 0.45 0.1 2.1 0.48
0.55 0.1 47.5 20.5 0.45 2 33 0.29
Fork 0.40 0.1 3.96 0.63 Fork 0.45 0 2.0 1.06
0.45 0.1 1.56 0.51 0.45 0.1 1.56 0.51
0.55 0.1 17.8 6.0 0.45 2 2.69 0.6

The values are obtained by comparing the signed distance functions of
the contour of the synthetic fiber tract without noise and those of the
segmented fiber tract when noise is added with a SNR = §.

The values are obtained by comparing the signed distance functions of
the contour of the synthetic fiber tract without noise and those of the
segmented fiber tract when noise is added with a SNR = 8.
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further behind the surface in the opposite direction of
the normal, improves slightly the robustness of the
method but the flow has difficulties segmenting bending
fiber tracts and it also increases the computation time. A
larger neighborhood, in the sense of adding voxels on
the side of the normal, would make it impossible to
track thinner fiber tracts. The best compromise between
robustness and correctness of the segmentation is a
neighborhood, lying on a line in the opposite direction
of the normal, of two voxels.

5.2. Real DT-MRI

5.2.1. MRI data acquisition

The diffusion tensor images used here were acquired
with a 1.5 T clinical MRI scanner (Magnetom Sym-
phony; Siemens, Erlangen, Germany). The data was
produced with a diffusion-weighted single-shot EPI se-
quence using the standard Siemens Diffusion Tensor
Imaging Package for Symphony. We acquired 44 axial
slices in a 128 x 128 matrix covering the whole brain of
healthy volunteers, from the vertex to the end of the
cerebellum. The voxel size was 1.64 mm X 1.64 mm with
a slice thickness of 3.00 mm without gap. Timing
parameters were a TR of 1000 ms and a TE of 83
ms. Diffusion weighting was performed along 6 inde-
pendent axes and we used a b-value of 1000 s/mm? at
a maximum gradient field of 30 mT/m. A normalizing
image without diffusion weighting was also acquired.
In order to increase the signal-to-noise ratio the meas-
ures were repeated 20 times. An anatomical T1 3D gra-
dient echo volume of the entire head was also acquired
during the same session. The whole examination lasted
about one hour. In the following example, images from
two healthy volunteers (male and female between 25
and 30 years old) were considered. Informed consent
was obtained in accordance with institutional
guidelines.

5.2.2. Preprocessing of data

The preprocessing of the data and the geometric flow
evolution was carried out in Matlab 6.1. The diffusion
tensor was computed for each voxel by linear combina-
tion of the log-ratio images according to Basser and
Pierpaoli (1998). The tensors were linearly interpolated
component-wise between slices along the z-axis, to ob-
tain a volume with a 3D regular grid of 1.64 mm.

To place the initial surface for the front propagation,
we use color images representing directional informa-
tion according to a method presented by Pajevic and
Pierpaoli (1999). The initial surface is then placed inside
an anisotropic region belonging to the fiber tract we
wish to segment. The initial surface can be as small as
one voxel but in general we chose the initial surface to
be a one voxel thin tube that is directed along the sup-
posed fiber.

Fig. 5. Segmentation of the left- and right cortico-spinal tract.

5.2.3. Results

The segmentation has been performed on three differ-
ent DT-MR images. Two of the image acquisitions are
from the same person. The results have been validated
visually by comparing with post-mortem based neuroan-
atomical knowledge. Results are presented for one of the
DT-MR images.

On the synthetic images we saw that several different
thresholds are possible for a good segmentation. On the
real MR data the same range of thresholds has been
used and depending on the segmentation we desire, the
threshold has been slightly varied within this range. In
Fig. 5, the cortico-spinal tract has been successfully seg-
mented. To illustrate the effect of different choices of
threshold on real DT-MRI, two segmentations of the
corpus callosum have been made with different thresh-
olds. The results can be seen in Fig. 6. For a stricter
threshold only the medial part, i.e. the splenium, the
truncus and the genu of the corpus callosum is seg-
mented. When choosing a lower threshold the segmenta-
tion surface extends further towards the forceps major,
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Fig. 6. Segmentation of the corpus callosum. (a) Segmentation is
limited to the splenium, truncus and genu when threshold = 0.47. (b)
In addition to (a) the segmentation also includes the forceps major, the
radiations, the tapetum and the forceps minor when threshold = 0.45.

the radiation of the corpus callosum, the tapetum and
the forceps minor.

In Fig. 7, we segmented the inferior long association
bundles as a whole, containing the occipito-frontal, the
longitudinal inferior and the uncinate fascicles. These
bundles run in an intricate and parallel fashion for most
of their trajectories, therefore we treat them as one en-
tity. It is a good example of a case where the diffusion
orientation plays a crucial role since no contrast between
this group and adjacent structures exists neither on frac-
tional anisotropy maps, T1 or T2 images.

6. Discussion and conclusion

We have presented a new method for segmentation of
the main core of fiber tracts by assuming that two adja-

Fig. 7. Segmentation of the inferior long association bundles as a
whole (occipito-frontal, longitudinal inferior and uncinate fascicles).

cent voxels within the same tract have similar diffusion
properties. The method manages to segment the larger
tracts in the brain. This presented segmentation method-
ology can be very useful for several purposes such as
studying the water diffusion in a tract of interest, e.g.
the genu of the corpus callosum and the centrum semio-
vale in alcoholics (Lim and Helpern, 2002; Pfefferbaum
and Sullivan, 2002) or in the splenium of the corpus
callosum in schizophrenic patients (Foong et al.,
2000). Through its precise description of the contour
of a white matter structure it allows us to compare its
shape across a selected population, e.g. study of the cor-
pus callosum sexual dimorphism (Clarke et al., 1989;
Pettey and Gee, 2002).
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The segmentation results are sensitive of the choice of
parameters. Since there is no objective measure of the
exact solution on the brain images it is difficult to deter-
mine exactly the optimum threshold. This is not neces-
sarily a negative property. An advantage is the flexible
segmentation, when the choice of threshold determines
how far to go in the fibers as shown in Fig. 6.

The balance between the propagation force and the
regularization force has also been determined on the
synthetic images. We have seen that ignoring regulariza-
tion leads to a noisy and irregular surface. When the reg-
ularization force is too strong the global shape of the
segmented tract is deformed.

As mentioned in Section 1, most of the existing
methods focus on following the principal eigenvector
of the diffusion tensor. The diffusion tensor contains a
lot more information than just the main direction and
magnitude of the diffusion. The other eigenvectors
and eigenvalues also contain important data which is
often ignored. Just looking at the principal direction
also leads to a larger sensitivity to noise since a smaller
deviation of the principal direction will lead to an
important accumulative error. By exploring more of
the tensor information we have created a flow that is
less sensitive to noise. The similarity measure we use
is based on the whole tensor and combines all eigenvec-
tors which makes it insensitive to swapping of eigen-
values, a phenomenon that can appear in the presence
of noise. The similarity measure is shape dependent
and favors anisotropic diffusion which is a great advan-
tage for our application.

Using geometric flows for the segmentation has the
advantage to other methods that it permits local com-
parisons of the diffusion in the direction of the surface
evolution. An important advantage of our approach is
the level set implementation. It provides an elegant tool
for propagating and smoothing the segmented tracts
and makes it possible to follow several paths simultane-
ously and effectively handle branchings and merging of
fiber tracts.

Another advantage of the flow is that we normalize
with the total diffusion in each point. This eliminates
the influence of the diffusion strength and makes a
more correct measure of the common diffusion of
the tensors. Calculating the NTSP with adjacent voxels
lying inside the propagating surface leads to a regular-
ization of the fiber tract in addition to the regulariza-
tion performed with the curvature based propagation
force.
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Appendix A. Existence and uniqueness of our
segmentation model

This section deals with the mathematical study of our
fiber tract segmentation model. We show that a unique

continuous viscosity solution exists for our second order
PDE:

{ b, + G(t,x,Vp,V2p) =0 in(0,T] x R?, ~

$(0,x) = ¢y(x) in R,

where V stands for the gradient, V? is the Hessian matrix
and the function G of our problem is

G = —(Hr(F) + ax)| V|, (A2)

where F is our front propagation speed defined in (9),
based on the tensor diffusion, H7, introduced in (13),
is a C? function that approximates the Heaviside func-
tion, x is the minimal principal curvature of level sets
of ¢ and « is a positive constant.

Our result is based on the theory of viscosity solu-
tions (Crandall et al., 1992) and more precisely on the
papers of Ambrosio and Soner (1996) for the minimal
principal curvature flow and Chen et al. (1991) for gen-
eralized curvature flow equations. Viscosity solutions
are used for the study of non-smooth solutions of PDEs.
They are consistent with classical smooth solutions since
they coincide with them when classical solutions exist.

Definition 1. [Monotonicity condition (Crandall et al.,
1992)]. Let u: R" — R a continuous real-valued func-
tion and P(x,u,Vu,V?u) a partial differential equation
such that P: R" x R x R" x ™" — R, where S$ be
the set of all symmetric, n X n matrices. The function P is
said to be proper if it satisfies

1. P(x,u.p,X) < P(x,u,p,X) with u, < u,

2. P(x,up,X) < P(xu,p,Y) with X > Y, where u,,u, €
R, x,pe R", X,Y € §”". The second condition is
called degenerate ellipticity.

Definition 2. [Viscosity solutions (Ambrosio and Soner,
1996)]. Let u:[0,7) x R" — R be a locally bounded
function and P:[0,7) x R" x Rx R" x §™" — R be
proper. For any function v, the upper semicontinuous
(u.s.c.) envelope v™ of v is the smallest u.s.c. function that
is greater than or equal to v. Similarly, the lower
semicontinuous (l.s.c.) envelope v. of v is the largest L.s.c.
function that is less than or equal to v.

(A) We say that u is a wviscosity subsolution of
u, + P(t,x,u,Vu,V’u) =0 in (0,7) x R" if for any
@€ C*((0,T) x R")

@,(to,x0) < P*(u*,V,V?0) (A.3)

at any local minimizer (¢,x) € (0,7) x R" of the differ-
ence u” — .
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(B) Similarly, we say that u is a viscosity supersolution
of u, + P(t,x,u,Vu,V*u) =0 in (0,7) x R" if for any
e CH(0,T) x R")

QDt(t(],XO) = P*(”*: vqjv vzq)) (A4)

at any local minimizer (¢,x,) € (0,7) x R”" of the differ-
ence U, — .

(C) Finally, u is a uwviscosity solution of wu,+
P(t,x,u,Vu,V*u) = 0 in (0, T) x R" if it is both a viscosity
subsolution and a viscosity supersolution.

Definition 3. [Crandall et al., 1992]. Let u and P be as in
Definition 1. The function P is said to be geometric if it
satisfies P(x,Ap,AX + up ® p) = LP(x,p,X),VA >0, u € R,
where x,pe R, X € §" and ® denotes the tensor
product of vectors in R".

Theorem 1. [Theorem 6.8 (Chen et al., 1991)]. Let
P(t,x,p,X) continuous, degenerate elliptic and geometric
in (0,T] x R" x (R"\ {0}) x §™". We also suppose that
P satisfies

—00 < P.(t,x,0,0) = P*(¢,x,0,0) < o0, (A.5)

{Prloxin=D) < -l a6
P(t,x,p 1) = —ci(|pl)

for some ¢y € C1[0,oo) and c+ = ¢y > 0 with some con-
stant ¢y Then for any uniformly continuous function uy,
there is a unique, uniformly continuous viscosity solution
uin [0, T] x R" of the initial value problem for the geomet-
ric parabolic equation:

{ u + P(t,x,Vu,V2u) = 0 in (0,7] x R", A7)

u(0,x) = up(x) in R".

Theorem 2. Our initial value partial differential equa-
tion, defined in (A.1) and (A.2), has a unique, uniformly
continuous viscosity solution ¢ in [0, T] x R".

Proof. (A) First, we check if G in (A.2) is continuous,
degenerate elliptic and geometric in (0,7] x R®x
(R*\ {0}) x $¥.

e The front propagation speed, (9), depends on the
tensor diffusion at points x and x — pN with p =1 and
2 and the normal vector N :‘g—ﬁ to the surface, so
F=F (x,%). Then, we suppose that F is continuous
in R? x (R*\ {0}) and since Heaviside function H is
C? then H(G) is continuous.

Let 4, and 4, be the principal curvatures of level sets
of ¢ in R®. If we order the principal curvatures in the
increasing order, i.e. 1; < 45, the minimal principal cur-

vature of level sets of ¢ in R® is then

K = min{i(J), 72(J)} = (), (A8)
with

_ PyyVPPyy
J =R (A.9)

where P, is a projection operator onto the normal space
to vector p: P, =1 —%. According to Ambrosio and
Soner (1996), the minimal principal curvature
Kk = 1(x,V,V3¢) is continuous in R* x (R*\ {0})x5**3
and so is the whole function G(x,V$,V’¢) in
R® x (R*\ {0}) x §¥.

e We have to show that Condition 2 of Definition 1 is
satisfied to prove that G is degenerate elliptic. Since F
does not depend on V>¢ the degenerate ellipticity condi-
tion is verified if

—LJ(p,X) < =W (p,Y)) with X > Y, X,Y € ¥,

p € R\ {0} and J(p, X) :PI];(‘PP.

(A.10)

Eigenvalues of a matrix X are defined in (Ambrosio and
Soner, 1996) by the formula

Xv.

4:(X) = max {mlg ﬁz\) :E C H,codim(E) <i— 1}.
ve v

(A.11)

This means that (A.10) holds for X > Y and that G is
degenerate elliptic.
e Definition 3 has to be satisfied to prove that G is of
geometric type, i.e.,
G(Ap, X + up® p) = AG(p,X),V2 > 0,p € R,
p R\ {0} and X, Y € ¥,
(A.12)

For the first term of G, we have

o (F (72 ) ol = attn(F) .

For the second term, using P,,=P, and P,(p
® p) =0, we have

i <Pip()uX + up @ p)P;, (A.13)

Ap| = Aoy |pl-
L) ) — sl

This implies that G is geometric.

(B) Second, we verify the conditions in (A.5) and (A.6).
e When V¢ = 0, we follow Ambrosio and Soner (1996)
since we take the same u.s.c. and Ls.c. envelopes for the
principal minimal curvature 4;:

{/1’;(0,)() = max{/(v,X) : v = 1}, (A.14)

21.(0,X) = min{4 (v, X) : |v| = 1}.
And we choose for F independent of X:



L. Jonasson et al. | Medical Image Analysis 9 (2005) 223-236 235

{F*(O) = max{F(v) : v = 1}, (A.15)

F.(0) =min{F(v) : |v| = 1}.
According to the form of (A.2), we have G(0,0)=
G.(0,0) =0 at any (z,x) € (0,T] x R® and so the condi-
tion in (A.5) is satisfied.

e Finally, G 1is geometric and continuous for
p € R*\ {0}, G satisfies the condition in (A.6) by taking

cx(p) = psup [Hr(F(p))| + sup 221 (Py), (A.16)
PI= P1=
using P,P, = P,

(C) Theorem 1 can be applied to our geometric para-
bolic equation (A.1) since it satisfies all required condi-
tions. Our PDE has a unique, uniformly continuous
viscosity solution ¢ in [0,7] x R® for any initial uni-
formly continuous function ¢, in R>. O

Theorem 3. [Theorem 7.1 (Chen et al., 1991)]. Suppose
that P, u and uy are as in Theorem 1. Let S(t) and D(t) be
defined by

S(1) = {x € R" u(t,x) = 0}, (A.17)

D(t) = {x € R";u(t,x) > 0}. (A.18)

The evolution family (S(1),D(t)) for t = 0 is uniquely
determined by (S(0),D(0)) and is independent of uy.
(S(0),D()) is called a solution family of (A.7) with initial
data (S(0),D(0)).

We apply this theorem to our problem to say that the
evolution of the active surface S embedded as the zero
level set of ¢ is independent with respect to the embed-
ding solution ¢, which zero level set represents the ini-
tial active surface S.
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