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Abstract

An important problem in computer vision is the reconstruction problem which consists in
reconstructing a three dimensional surface on the base of different images of the surface.
The classical formulations for solving this problem work with the so called ≪epipolar
lines≫ that reduce the problem to one dimensional problems. Unfortunately they are
an oversimplification of the reality and often yield solutions with limited quality. In
1998 a minimum s− t cut formulation of the reconstruction problem was proposed, that
achieves in general more accurate results than the classical methods but is much more
expensive in computational time and memory needs. Therefore, this new formulation is
only of limited usability for large problems.
In this master thesis we propose methods that allow to speed up this resolution tech-
nique and to find accurate approximations by parallelizing the problem. Furthermore
we introduce a formulation allowing to reduce locally the reconstruction region and to
profit from preliminary knowledge of the surface by imposing border and internal con-
ditions. Based on this formulation we introduce a pyramidal approach that allows to
reduce the complexity of the problem and that can be combined with parallelization
techniques. Most of the proposed methods and algorithms were implemented in C++
such that they can be applied to real problems.
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Introduction

The reconstruction problem in stereo is often described as follows. Given two or more
images of a surface in 3D (with eventually some additional parameters of the cameras
that have taken the images), how can we reconstruct the surface? The domain han-
dling this problem is also known as ≪stereo≫ and the reconstruction problem as ≪stereo
problem≫ or ≪stereo matching problem≫. The reconstruction problem can also be for-
mulated with more general 3D objects than only surfaces. But often we can reduce this
kind of problems, to the problem of reconstructing a 3D surface.

From a theoretical point of view, it is in general impossible to reconstruct exactly a sur-
face on the basis of a certain number of images and parameters of the cameras. Therefore
to solve the reconstruction problem means to approximate the real 3D surface ≪as good
as possible≫.

In the last decades several formulations and methods were proposed to distinguish good
from bad approximations and to solve the reconstruction problem. Most of them are
based on the so called ≪epipolar lines≫. These methods allow to reduce the recon-
struction problem to one dimensional problems (along the epipolar lines) that can be
solved efficiently by dynamic programming (see for example [6] for more information).
The drawback of these methods is that they often create artifacts (1) (typically per-
pendicular to the epipolar lines) because they use an oversimplified formulation of the
reconstruction problem that can only guarantee smoothness of the reconstructed object
in one dimension (along the epipolar lines). Another problem of these methods is that
they often allow only two images for the reconstruction of a surface.

In 1998 a new formulation of the reconstruction problem, that allowed to find solutions
that are more accurate and contain less artifacts, was proposed by Sébastien Roy and
Ingemar Cox in [2]. Additionally, their formulation allowed to use an arbitrary number
of images (≥ 2) for the reconstruction. In this formulation the resolution of the problem
reduces to find a minimum s − t cut (2) in a network. Since then, numerous other
propositions were made to solve the stereo problem by finding a minimum s− t cut.

Unfortunately, even for relatively little reconstruction problems, we get huge correspond-
ing networks with several millions of vertices and edges. Therefore, large problems be-
come quickly intractable because of memory needs and executional time.

(1)Artifacts are unrealistic discontinuities in the reconstruction.
(2)An s − t cut is a partition of the vertex set of a network into two parts, and its value is the sum of the

capacities on the arcs that are connecting these two parts.
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The main objectives of this master thesis is to develop further this formulation of the
reconstruction problem in the following points:

• Theoretical and practical comparison of different algorithms for the resolution of
the minimum s− t cut problem.

• Development of methods for treating internal and border conditions.

• Development of fast methods for the resolution of the reconstruction problem.

• Development of methods that allow to find approximative solutions by parallelizing
the problem and therefore make it possible to solve large reconstruction problems.

• Implementation of an efficient program for the resolution of the reconstruction
problem as well as the implementation of different proposed methods.

This work is divided into six chapters. In a first chapter we explain how the reconstruc-
tion problem can be formulated as a minimum s − t cut problem. In a second chapter
some important background about flows and s − t cuts are introduced. Chapter three
discusses different algorithms for the resolution of the minimum s − t cut problem. In
chapter four, we develop formulations for treating internal and border conditions as well
as more general restrictions. The fifth chapter handles parallelization methods. Finally,
in chapter six we shortly discuss the code we have written for this work.
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1 A minimum s − t cut formulation

1.1 Introduction

This chapter describes how we can formulate the stereo problem as a problem of finding
a minimum s−t cut in a network. The formulation that will be described in the following
pages is based on article [1].

This method imposes some minor restrictions on the surface to reconstruct. Also some
preliminary knowledge of the position of the surface to reconstruct is required. In a
first section, we will precise these two points and introduce some basic definitions. A
surface that we can try to reconstruct with this formulation will be called a valid surface.
The basic idea in the following introduced formulation is to find the ≪optimal≫ valid
surface by energy minimization. Unfortunately, an energy minimization on the set of
valid surfaces would be a difficult variational problem that in general has to be solved
by numerical methods. That is why we will discretize our model in a following section.
In a third section, an energy function will be introduced on the discretized model that
will allow us to give a formal description of our formulation as an optimization problem.
Finally this optimization problem will be identified with a minimum s − t cut problem
in a network.

1.2 Preliminaries

This section will precise the traits of the surfaces we can try to reconstruct with the
minimum s− t cut formulation and introduce some basic definitions.

1.2.1 The Matching Volume

At first, a volume MV of the 3D world is selected to constrain where the stereo matching
should occur. This volume will be referred as the matching volume and has to satisfy
some properties. It has to be possible to define a front region FR and a back region BR
of the matching volume that are disjoint, such that every point in the matching volume
is between this two regions. Additionally the surface we are trying to reconstruct has to
cut the matching volume in two areas such that the front region lies entirely in one area
and the back region entirely in the other.

It is common to choose the matching volume as a truncated pyramid corresponding
to the viewing volume of a fixed camera (see figure 1.1). This camera is called the
≪reference camera≫ and the corresponding image ≪reference image≫. To simplify the
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explanations, we will concentrate on this case.

1.2.2 Depth-representation and disparity-representation

We now introduce a coordinate system for the matching volume. We fix a point p in
the real world. Let qref be the (euclidian) distance between the projection center of
the reference camera and the reference image and let wp be the distance between p

and the reference image. So we can represent p as p = (px, py, pz)depth where (px, py)
are the coordinates of the projection of p on the reference image and pz = qref + wp.
The z-component pz is called the depth of point p and we call the representation p =
(px, py, pz)depth the depth-representation of p. With this coordinate system, we can
describe the matching volume MV, the front FR and the back BR in the following
way:

MV = {(x, y, z)depth | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, zmin ≤ z ≤ zmax}
FR = {(x, y, zmin)depth | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}
BR = {(x, y, zmax)depth | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}

We can replace the depth component of a point by another term that we call disparity.
We define the disparity pd of a point p as

pd =
1

pz

(1)

So we can represent a point p also as p = (px, py, pd)disp. This is the disparity-representation
of point p. In general we will use the disparity-representation because it has an impor-
tant advantage compared to the depth-representation that we will see later. We have
the following equalities:

MV = {(x, y, d)disp | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, dmin ≤ d ≤ dmax}
FR = {(x, y, dmax)disp | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}
BR = {(x, y, dmin)disp | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}

where dmin =
1

zmax

dmax =
1

zmin

(1)In fact the traditional definition of disparity in stereo is a little bit different (for further information see
[6] ). But there too, the disparity pd is proportional to 1

pz
. For our purposes, the factor of proportionality

is not of great interest.
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Figure 1.1: Typical choice of the matching volume as a truncated pyramid corresponding
to the viewing volume of the reference camera.

1.2.3 Valid surfaces

With the previous notations we can now give a definition of a valid surface. A valid
surface (with respect to the matching volume MV) is a surface that cuts each straight
line of the type D(x,y) = {(x, y, d)disp | dmin ≤ d ≤ dmax} exactly once for all (x, y) ∈
[0, xmax] × [0, ymax] . In other words, a valid surface can be parameterized by its front
(as well as back) region, i.e. if we define the domain D as

D = [0, xmax] × [0, ymax]

so a surface S is valid, if and only if, we can parameterize it as follows:

S : D −→ MV
(x, y) 7−→ (x, y, fS(x, y))disp

with fS : D −→ [dmin, dmax]

So a valid surface assigns to every point in D exactly one disparity. Because of this pa-
rameterization property, a valid surface is often called disparity surface or depth surface.
We denote with S the set of all valid surfaces with respect to MV. Additionally, we
introduce the notation F = {fS | S ∈ S} which is the set of all disparity mappings. Be-
cause of the natural one-to-one correspondence between elements in S and F , we denote
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by Sf the valid surface corresponding to the disparity mapping f ∈ F .

The surface S̃ that we are trying to reconstruct, has to be a valid surface. This is an
important additional restriction.

1.3 Discretization

The next step in the formulation is the discretization of the previously defined model.

The Matching Space

The discretized matching volume will be called matching space and will be denoted
by MS. There have been several propositions how to discretize the matching volume.
The simplest and most intuitive way of discretization (that is also used in [1]) uses a
3D-grid as in Fig. 1.2. Here we have a uniform discretization in terms of the disparity-
representation with nx, ny, nd points in the corresponding axes. So we have the following
meshs for directions x,y and d:

∆x =
xmax

nx − 1

∆y =
ymax

ny − 1

∆d =
dmax − dmin

nd − 1

The matching space can now be written as follows:

MS = {(xi, yj, dk)disp | i ∈ {0, 1, . . . , nx − 1},
j ∈ {0, 1, . . . , ny − 1},
k ∈ {0, 1, . . . , nd − 1}}

where xi = i · ∆x
yj = j · ∆y
dk = dmin + k · ∆d

It is important to note that the grid density of the matching space (i.e. the number of
points in MS per unit volume) decreases linearly with respect to the depth (see Fig.
1.2). This property is particularly interesting because in the following we will try to
approximate the surface S̃ with a discretized surface that is defined on the matching
space. So for big depth values, we will have a less detailed description of the surfaces as
the 3D-grid is less dense. This corresponds well to the information that we have on the
reference image because a region of a surface, that is near to the reference camera, will be
described in more details on the reference image than a farer region. So with a uniform
discretization in terms of the disparity-representation, we have that the mesh density
in the matching space corresponds to a uniform ≪information density≫ on the reference
image. This is an important advantage of the disparity-representation compared to the
depth-representation.
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Figure 1.2: Matching space with a uniform discretization of the disparities.

1.3.1 Valid discretized surfaces

In a analogue manner as by the valid surfaces, we can now define a valid discretized
surface (with respect to the matching space MS). We begin with the definition of the
discretized domain Dd.

Dd = {x0, x1, . . . , xnx−1} × {y0, y1, . . . , yny−1}

So Sd is a valid discretized surface if it is a function that can be written in the following
way:

Sd : Dd −→ MS
(x, y) 7−→ (x, y, fdSd(x, y))disp

with fdSd : Dd −→ {d0, d1, . . . , dnd−1}

Analogue to the continuous formulation, a valid surface assigns to every point in the
discretized domain Dd exactly one disparity. The set of all valid discretized surfaces
with respect to MS will be denoted by Sd and additionally, we introduce the notation
Fd = {fd

Sd | Sd ∈ Sd} which represents the set of all discretized disparity mappings.

Because of the natural one-to-one correspondence between elements in Sd and Fd, we
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write Sd
fd for the valid discretized surface corresponding to the discretized disparity

mapping fd ∈ Fd.

1.3.2 Energy functions for valid discretized surfaces

In this subsection we will introduce energy functions for the set of all discretized surfaces
Sd. Such an energy function E, is a function of the type

E : Sd −→ R+

and should associate low energies for elements in Sd that represent good approximations
of the surface S̃ to reconstruct and high energies for bad approximations.

Before explaining the way of characterizing good approximations in [1], we introduce
some notations. Let us suppose that we have N images (in black and white) of the
surface to reconstruct. So each point p = (x, y, d)disp ∈ MV can be projected on
every of the N images and there we can associate an intensity to this projected point.
Let vl(x, y, d) = vl(p) be this intensity of the projection of p onto image l (where l ∈
{1, 2, . . . , N}).
So we could say that a surface Sd is a good approximation of the real surface S̃, if we
have that for each point p ∈ Sd the intensities v1(p), v2(p), . . . , vn(p) are similar. This
similarity could be measured by an empirical variance of the type

κv : MS −→ R+

p 7−→ 1

N

N∑

l=1

(vl(p) − v(p))2

where v(p) =
1

N

N∑

l=1

vl(p)

and a corresponding energy function ECκv : Sd −→ R+ could be

ECκv(S
d) =

nx−1∑

i=0

ny−1∑

j=0

κv

(
(xi, yj , f

d
Sd(xi, yj))disp

)

This idea is based on a hypothesis that is often made in stereo, the so called lambertien
hypothesis on S̃. The surface S̃ is called lambertian, if the intensity of a point p ∈ S̃

does not depend on the point of view. In particular, if S̃ is lambertian and p ∈ S̃ is a
point that is seen from all n images, so we have

v1(p) = v2(p) = · · · = vn(p)

This would be the ideal case for our first criteria for good approximations. But unfor-
tunately, real surfaces are not perfectly lambertian but only approximately and a point

15



p ∈ S̃ is often not visible on all n images. As a result, an optimal surface obtained by
minimizing an energy function of the type ECκv , is in general not very smooth and shows
a lot of unrealistic discontinuities. Fig 1.3 b) shows a result of such an optimization.
That’s why typical energies for the stereo problem contain at least two terms. One term
is an energy function of the type ECκv , that is called the consistency term, to which
we add another term that tries to favor smooth surfaces, called smoothing term. The
smoothing term ES used in [1] has the following form:

ES : Sd−→ R+

Sd 7−→
∑

q1,q2∈Dd,
neighbors

K|fdSd(q1) − fdSd(q2)|

where K ∈ R+

Where two points q1 = (xi1 , yj1), q2 = (xi2 , yj2) ∈ Dd are considered as neighbors, if they
are vertically or horizontally adjacent to each other in Dd, i.e. if

i2 = i1 and j2 ∈ {j1 − 1, j1 + 1} or

j2 = j1 and i2 ∈ {i1 − 1, i1 + 1}

and K is a constant that gives a weight to the smoothing term and is therefore called
smoothing factor.
Finally, the energy function E that is used in [1], has the following form

E : Sd−→ R+

Sd 7−→ ECκv(S
d) + ES(Sd)

and the corresponding optimization problem is

argmin
Sd∈ Sd

(
E(Sd)

)
(1.1)

This is the kind of problem, we will solve afterwards by graph cut methods. Figure 1.3
c) shows an example of an optimal solution using this formulation.

Other consistency terms

The choice of an appropriate energy function is not a trivial task. Various energy func-
tions have been proposed for the resolution of the stereo problem.
By the definition of our matching space, it is for example interesting to give a greater in-
fluence to the reference image in the consistency term, because we know that every recon-
structed point is visible from the reference camera. If we denote by lref ∈ {1, 2, . . . ,N}
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Figure 1.3: a) A colored version of the reference image. b) Minimization result corre-
sponding to the energy function ECκv (which has no smoothness term). c)
Solution of the problem 1.1 (that corresponds to an energy function contain-
ing a smoothness term).

the index of the reference camera, so we can define such a consistency term ECκ′v
in the

following way.

ECκ′v
(Sd) =

nx−1∑

i=0

ny−1∑

j=0

κ′v

(
(xi, yj , f

d
Sd(xi, yj))disp

)

where κ′v =
1

N

N∑

l=1

(vl(p) − vlref
(p))2

(1.2)

The consistency terms ECκv and ECκ′v
are both based on the lambertian assumption

and try to compare intensities of a points p that is projected on the different images.
A different approach is to compare the intensity structures obtained by the projection
of a neighborhood of p, on the different images. This approach is less dependent on
the lambertian assumption and gives very interesting results. On the other hand, the
calculation of such an energy function is much more expensive in computational time.
Many well known energy functions of this type use a technique called ≪normalized cross
correlation≫ (NCC) to compare the projected regions.

A lot of interesting consistency terms need preliminary optimization techniques for their
calculation and are therefore very expensive in computational time.

Projections

Consistency terms typically use projections of a point on the different images. The the-
ory of projective geometry gives powerful tools for implementing efficiently projections
of this type. A good reference for the use of projective geometry in vision is [6].
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Energy functions considered in this document

Unfortunately, there are energy functions that give optimization problems that cannot
be solved efficiently by graph cut methods. For this reason, we will focus on some special
energy functions in this document. The consistency terms we consider in this document,
are terms of the type

ECκ(S
d) =

nx−1∑

i=0

ny−1∑

j=0

κ
(
(xi, yj, f

d
Sd(xi, yj))disp

)

where κ : MS −→ R+

(1.3)

and for the smoothing term, we typically use ES. The function κ is called a matching
cost function.

This leads to an energy function of the type

Eκ = ECκ + ES (1.4)

and to the following optimization problem

argmin
Sd∈ Sd

(
Eκ(S

d)
)

= argmin
Sd∈ Sd

(
ECκ(S

d) + ES(Sd)
)

(1.5)

In the next section, we will see how such an optimization problem can be formulated as
a graph cut problem on a graph with a cubic topology.

The interested reader can find an analysis on the type of energy functions that lead to
optimization problems which can be solved efficiently via graph cuts methods in [8].

Energy functions induced by variational formulations

Numerous energy functions can be seen as discretizations of energy functionals on a
continuous problem that works on the matching volume MS and on the valid surface
space S. In particular, any energy of the type 1.4 can be seen as discretization of an
energy functional on S. In [5] can be found a short explanation of this passage. More
general energy functionals that can be solved by discretization, can be found in [3] or
[4].

1.4 Network construction

1.4.1 Introduction

In this section, we will begin by introducing some notations concerning directed graphs.
Then we will construct, on the base of an energy function of the type 1.4, a directed
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network G = (V,E, k) (2), such that there is a natural correspondence between valid
discretized surfaces Sd ∈ Sd and s − t cuts in G. Additionally, we will see that with
an appropriate choice of the capacity function k, we can achieve that the energy value
E(Sd) is equal to the value of the s− t cut in G that corresponds to Sd.

It is interesting to note that it is also possible to construct an undirected network, very
similar to G, which allows to solve the problem 1.5 by graph cut techniques as well. A
description of the network construction can be found in [1]. For our purposes, we only
work with the directed network.

1.4.2 Preliminaries for directed networks

This subsection introduces some additional notations for directed networks. Let G =
(V,E, k) be a directed network. We begin by notations concerning vertices and edges
and then introduce some notations that simplify the work with capacity functions.

Notation 1.4.1 (Complementary of a vertex set). The complementary V1 of a vertex
set V1 ⊂ V is defined as

V1 = V \ V1

Notation 1.4.2 (Cocircuit and cocycles). Let V1 ⊂ V be a subset of V . The positive
cocircuit ω+(V1) of V1 is the set of all edges in E exiting from V1.

ω+(V1) = {(v,w) ∈ E | v ∈ V1, w 6∈ V1}

Analogously we define the negative cocircuit ω−(V1) of V1 to be the set of all edges
entering in V1.

ω−(V1) = {(v,w) ∈ E | v 6∈ V1, w ∈ V1} = ω+(V1)

The cocycle ω(V1) is the union of the positive and negative cocircuits of V1.

ω(V1) = ω+(V1) ∪ ω−(V1)

Notation 1.4.3 (Edges from V1 to V2). Let V1, V2 ⊂ V be two subsets of V , so we
introduce the following notation for the set of all edges from V1 to V2

ω+(V1, V2) = ω+(V1) ∩ ω−(V2)

Additionally we define

ω−(V1, V2) = ω+(V2, V1)

(2)V is the vertex set, E the set of edges, and k : E → R+ ∪ {∞} a capacity function. We use the term
network to emphasize that we are considering a graph with capacities on its edges. Sometimes we use
simply the term graph for a network if the capacities are not of great importance.
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Notation 1.4.4 (Capacity of a set of edges). We use the following notation for capacity
functions. If U ⊂ E, so

k(U) =
∑

u∈U

k(u)

Notation 1.4.5 (Capacities of the edges from V1 to V2). We now introduce a simple
notation for the capacities of the edges from V1 to V2

k(V1, V2) = k(ω+(V1, V2))

Property 1.4.6. If U1, U2 ⊂ E with U1 ∩ U2 = ∅ so we have

k(U1 ∪ U2) = k(U1) ∪ k(U2)

And as a consequence of this we have, if V11, V12, V21, V22 ⊂ V with V11 ∩ V12 = ∅ and
V21 ∩ V22 = ∅, so

k(V11 ∪ V12, V21 ∪ V22) = k(V11, V21) + k(V11, V22) + k(V12, V21) + k(V12, V22)

1.4.3 The directed network G = (V, E, k) corresponding to the stereo
problem

This subsection describes the directed network G = (V,E, k) for the resolution of the
problem 1.5. In a first step, we introduce the non terminal vertices V ′ of G and present
one-to-one correspondences between V ′ and discretized terms introduced before. In a
second step, we will complete the network construction by adding the terminals s and t,
arcs and defining the capacity function k. Finally, we will treat the relationship between
s− t cuts in G and valid discretized surfaces and show how to solve the problem 1.5 by
a minimum s − t cut on G. Because the network G allows to solve the reconstruction
problem, we will call it reconstruction network.

The vertex set V ′
⊂ V and his relations with the matching space

For the construction of the directed network G, we begin by partitioning the set of
vertices V into the set of terminals {s, t} and a set V ′

V = V ′ ∪ {s, t}
where the set V ′ represents a 3D-grid, that can be embedded in N3 or R3 and is defined
as follows:

V ′ = {0, 1, . . . , na − 1} × {0, 1, . . . , nb − 1} × {0, 1, . . . , nc − 1} ⊂ N3 ⊂ R3

where na = nx

nb = ny

nc = nd + 1
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The set of vertices V ′ can be viewed as another representation of the elements in MS
where we simply have added an additional slice as illustrated in Figure 1.4. To avoid
ambiguities with the previous section, we nominate the three cartesian axis of the N3

respectively R3 space, where V ′ is embedded, with a-axis, b-axis and c-axis (they corre-
spond to the x-, y- and d-axis of the matching space). So a vertex v ∈ E′ can be written
as v = (va, vb, vc).

Additionally, we define the graph front VF and the graph back VB of G as follows:

VF = {(a, b, 0) ∈ V ′ | a ∈ {0, 1, . . . , na − 1}, b ∈ {0, 1, . . . , nb − 1}}
VB = {(a, b, nc − 1) ∈ V ′| a ∈ {0, 1, . . . , na − 1}, b ∈ {0, 1, . . . , nb − 1}}

The very direct relationship between the vertex set V ′ \ VB highlighted before, allows
us to define one-to-one correspondences between discretized terms as MS, Dd, Sd and
Fd and terms defined on the base of V ′. This will help us to understand better the
graph topology and gives us the possibility to concentrate on working with the network
without permanent switching to other representations. Additionally, it simplifies the
notation for further work.
In a first step, we define a simple one-to-one correspondence between the set V ′ \VB and
the points in the matching space MS as already described, by the following function:

η : V ′ \ VB −→ MS
(a, b, c) 7−→ (xa, yb, dc)disp

In a second step the discretized domain Dd can trivially be associated to the graph
domain DG = {0, 1, . . . , na − 1} × {0, 1, . . . , nb − 1} by the following function:

χ : DG −→ Dd

(a, b) 7−→ (xa, yb)

For the representation of Fd by the network G, we define the set FG of all graph disparity
mappings to be the set of all functions fG of the type

fG : DG −→ {0, 1, . . . , nc − 2};
The function ψ below gives a one-to-one correspondence between Fd and FG.

ψ : FG −→ Fd

with ψ(fG)(xi, yj) = dfG(i,j) ∀ (xi, yj) ∈ Dd

In a next step, we define the set of all graph surfaces SG to be the set containing all
functions SG that can be written in the following way
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Figure 1.4: The vertex set V ′ as another respresentation of the matching space with an
additional slice of vertices. Note that the orientation is changed in the new
coordinate-system with the axes a, b and c.
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SG : DG −→ V ′ \ VB
(a, b) 7−→ (a, b, fSG(a, b))disp

with fSG ∈ FG

Analogous to our previous notations, we denote by SG
fG the graph surface corresponding

to the graph disparity mapping fG.

We have also a bijection φ between SG and Sd induced by the correspondence between
FG and Fd.

φ : SG −→ Sd

SGfG 7−→ Sdψ(fG)

Thanks to this one-to-one mapping between valid discretized surfaces and graph surfaces,
we can define for each energy function on Sd, an energy function on SG. We simply
write the superscript G on an energy function on Sd to denote the corresponding energy
function on SG. So we have

ECG
κG(SG) =

na−1∑

a=0

nb−1∑

b=0

κG(a, b, fGSG(a, b))

where κG : V ′ \ VB −→ R+

v 7−→ κ(η(v))

(1.6)

ESG(SG) =
∑

q1,q2∈DG,
neighbors

K∆d|fGSG(q1) − fGSG(q2)| (1.7)

and

EG
κG = ECG

κG + ESG (1.8)

The optimization problem 1.5 can now be reformulated as

argmin
SG∈ SG

(
EG
κG(SG)

)
= argmin

SG∈ SG

(
ECG

κG(SG) + ESG(SG)
)

(1.9)

The function κG will be called graph matching cost function.
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Terminals, arcs and capacities

Now we introduce the arcs on the vertices V ′ i.e. all the arcs in the set E′ = E∩V ′×V ′.
The vertices V ′ are linked with arcs parallel to a, b and c-axis to their neighbors in the
way that we obtain a 3D-grid as illustrated in figure 1.5 a). As for every arc in E′, his
reversal arc(3) is also element of E′, we represented an arc and his reversal by a simple
line without arrows in order not to overcharge the figure.

Formally, we can describe E′ in the following way:

E′ = {(v,w) ∈ V ′ × V ′ | (w − v) ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}}

We add the source s in front of the graph front VF and we link s with arcs to all vertices
of VF . Similarly we add the sink vertex t behind the graph back VB and we link all
vertices of VB with arcs to t. Figure 1.5 b) shows the graph obtained which is the
network G without capacities. If we write Esource for the arcs adjacent to s and Esink
for the arcs adjacent to t, so we have

E = E′ ∪ Esource ∪ Esink

where Esource = {(s, v) | v ∈ VF}
Esink = {(v, t) | v ∈ VB}

We further partition the set E′ in the following way:

E′ = Econsistency ∪Ebackward ∪Esmoothness

where Econsistency = {(v,w) ∈ E′ | wc = vc + 1}
Ebackward = {(v,w) ∈ E′ | wc = vc − 1}

Esmoothness = {(v,w) ∈ E′ | wc = vc}

For q1, q2 ∈ DG, we define

Esmoothness(q1, q2) = {(v,w) ∈ Esmoothness | (va, vb) = q1, (wa, wb) = q2}

Clearly Esmoothness(q1, q2) = ∅, if q1 and q2 are not neighbors in DG. In a similar way,
we define for q ∈ DG

Econsistency(q) = {(v,w) ∈ Econsistency | (va, vb) = q}
Ebackward(q) = {(v,w) ∈ Ebackward | (va, vb) = q}

Finally we introduce the capacity function k. For (v,w) ∈ E we define

(3)The reversal of an arc e = (v, w) is defined as eR = (w, v).
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Figure 1.5: a) The graph (V ′, E′) which is the network G without capacities and ter-
minals. b) The graph (V,E) which is the network G without capacities.

k(v,w) =





∞ if (v,w) ∈ Esource ∪ Esink ∪ Ebackward
κG(η(v)) if (v,w) ∈ Econsistency

KG = K∆d if (v,w) ∈ Esmoothness

KG will be called graph smoothness factor.

Relationship between valid discretized surfaces and s − t cuts in G

Each graph surface SG ∈ SG can be associated to a partition of V into two subsets, one
before the graph surface SG, that we denote by ASG and one behind SG, that we denote
by ASG = V \ASG i.e.
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ASG = {s} ∪ {v ∈ V ′ | vc ≤ fGSG(va, vb)}
ASG = {t} ∪ {v ∈ V ′ | vc > fGSG(va, vb)}

So we can associate to a graph surface SG the following s− t cut (4):

CSG = [ASG , ASG ]

It is important to note that conversely it is not always possible to associate to each s− t
cut C = [Vs, Vt] a graph surface SG ∈ SG such that C = CSG. The problem is, that cuts
C = [Vs, Vt] that can be associated to a graph surface SG (i.e. C = CSG) always satisfy
that for each q = (a, b) ∈ DG there is exactly one arc in ω+(Vs)∩Econsistency(q), namely
the arc ((a, b, fG

SG(a, b)), (a, b, fG
SG(a, b) + 1)).

Such an s− t cut C = [Vs, Vt] that corresponds to graph surface is called valid s− t cut
and can be characterized as follows.

Property 1.4.7 (Valid s− t cut).

∀ (a, b) ∈ DG ∃ c(a,b) ∈ {0, 1, . . . , nc − 2} such that

{(a, b, 0), (a, b, 1), . . . , (a, b, c(a,b))} ⊂ Vs and

{(a, b, c(a,b) + 1), (a, b, c(a,b) + 2), . . . , (a, b, nc − 1)} ⊂ Vt

Where c(a,b) corresponds to fG
SG(a, b). Conversely, it is easy to see that for every s− t cut

C satisfying 1.4.7, the graph surface SG ∈ SG defined by fG
SG(a, b) = c(a,b) ∀ (a, b) ∈ DG

satisfies C = CSG . This shows that property 1.4.7 is effectively a characterization of valid
s− t cuts. We denote the graph surface associated to a valid s− t cut C by SGC .
This establishes a one-to-one correspondence between valid s − t cuts on G and graph
surfaces.

Definition 1.4.8 (Value of an s− t cut). The value of an s− t cut C = [Vs, Vt] on the
network G = (V,E, k) is defined by

k(C) = k(ω+(Vs))

The following property gives a first justification of the construction of the network G

and is a key ingredient for the passage from problem 1.9 to a minimum s−t cut problem.

Property 1.4.9.

ECG
κG(SG) + ESG(SG) = k(CSG) ∀ SG ∈ SG (1)

more precisely we have:

ECG
κG(SG) = k(ω+(ASG) ∩ Econsistency) (2)

ESG(SG) = k(ω+(ASG) ∩ Esmoothness) (3)

(4)An s − t cut C of G is a partition of the vertices V into two subsets Vs and Vt, such that s ∈ Vs and
t ∈ Vt and we write C = [Vs, Vt].
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Proof. By the definition of a graph surface, we have that ω+(ASG) ⊂ Econsistency ∪
Esmoothness. So equation 1 of property 1.4.9 is a consequence of the other ones and it
suffices to prove the two last equations.

We begin by the proof of equation 2. We fix q = (a, b) ∈ DG. Because CSG = [ASG, ASG ]
is a valid s − t cut, we know that the only arc in ω+(ASG) ∩ Econsistency(q) is e(a,b) =

((a, b, fG
SG(a, b)), (a, b, fG

SG(a, b) + 1)), and we have k(e(a,b)) = κG
(
(a, b, fG

SG(a, b)
)
. By

summing these capacities over DG, we establish the equality under consideration.

For equation 3, we will show that the part of the smoothness energy term ESG associated
to two neighboring points q1, q2 ∈ DG (i.e. the term of the sum in 1.7 corresponding to
q1, q2), corresponds to the capacities of the arcs (v,w) ∈ ω+(ASG)∩(Esmoothness(q1, q2)∪
Esmoothness(q2, q1)). We suppose without loss of generality that fG

SG(q1) ≥ fG
SG(q2).

Therefore, the part of the term ESG associated to the two neighboring points q1, q2 is
K∆d(fG

SG(q1) − fG
SG(q2)). Additionally we have that ω+(ASG) ∩ Esmoothness(q2, q1) = ∅

and

ω+(ASG) ∩ Esmoothness(q1, q2) ={((q1, fGSG(q1)), (q2, f
G
SG(q1))),

((q1, f
G
SG(q1) − 1), (q2, f

G
SG(q1)) − 1),

. . . ,

((q1, f
G
SG(q2) + 1), (q2, f

G
SG(q2) + 1))}

Figure 1.6 illustrates the set ω+(ASG) ∩ Esmoothness(q1, q2). For simplicity only a 2D
slice of the network G that contains the two neighbors q1 and q2 is represented in this
figure.

By the previous observations we have

|ω+(ASG) ∩ Esmoothness(q1, q2)| = fGSG(q1) − fGSG(q2)

and finally

k(ω+(ASG) ∩ Esmoothness(q1, q2)) = K∆d(fGSG(q1) − fGSG(q2))

what finishes the proof.

Further we have the following two properties which allows us finally to solve problem
1.9 by the way of a minimum s− t cut on G.

Property 1.4.10. If C = [Vs, Vt] is an s− t cut on the network G, so we have

C is valid ⇔ k(C) <∞

Proof.
⇒) By property 1.4.7 it is easy to see that if C = [Vs, Vt] is a valid s− t cut, so

ω+(Vs) ∩ {Esource ∪ Esink ∪ Ebackward} = ∅
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Figure 1.6: Illustration of the set ω+(ASG) ∩ Esmoothness(q1, q2). For simplicity, we only
represent a 2D slice of the network G containing the two neighbors q1, q2 ∈
DG. A line without arrows means that we have arcs in both directions (but
for reasons of illustration, we sometimes draw explicitly both arrows).

Therefore ω+(Vs) contains no arc of infinite capacity and we have k(C) <∞.

⇐) We will prove this implication by contraposition. If C is not valid, so C does not
satisfy property 1.4.7, i.e. ∃ (a, b) ∈ DG such that (a, b) does not satisfy the conditions
in the mentioned property. There are only three possibilities for (a, b) to violate this
conditions.

case 1: {(a, b, 0), (a, b, 1), . . . , (a, b, nc − 1)} ⊂ Vs
But in this case the arc e = ((a, b, nc − 1), t) ∈ ω+(Vs) and k(e) = ∞

case 2: {(a, b, 0), (a, b, 1), . . . , (a, b, nc − 1)} ⊂ Vt
In this case the arc e = (s, (a, b, 0)) ∈ ω+(Vs) and k(e) = ∞

case 3: ∃ c ∈ {1, 2, . . . , nc − 1} with (a, b, c) ∈ Vs and (a, b, c − 1) ∈ Vt
Here e = ((a, b, c), (a, b, c − 1)) ∈ ω+(Vs) and k(e) = ∞

In all cases we have k(C) = ∞.

Property 1.4.11. If C = [Vs, Vt] is a minimum s− t cut on G, so C is valid.

Proof. Because the cut C ′ = [{s} ∪ VF , {s} ∪ VF ] satisfies

k(C ′) =
∑

q∈DG

k((q, 0), (q, 1)) <∞
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and C is minimum, we have

k(C) ≤ k(C ′) <∞

By property 1.4.10 we have that C is valid.

Finally we can state the following theorem that reduces problem 1.9 on a minimum s− t
cut problem on G.

Theorem 1.4.12.

C is a minimum s− t cut on G⇒ SGC ∈ argmin
SG∈SG

(
EG
κG(SG)

)

Conversely, we have

SG ∈ argmin
SG∈SG

(
EG
κG(SG)

)
⇒ CSG is a minimum s− t cut on G

Proof. Because of property 1.4.9 and the one-to-one correspondence between valid s− t

cuts and graph surfaces, we know that the minimization

argmin
SG∈SG

(
EG
κG(SG)

)

is equivalent to the minimization of

argmin
C valid s−t cut

(k(C)) (∗)

where we associate to a graph surface SG the valid s − t cut CSG and inversely we
associate to a valid s− t cut C the graph surface SGC . By property 1.4.11, we know that
a minimum s− t cut is valid and therefore solution of (∗), which finishes the proof.

Thus we have reduced the problem 1.9 to the problem of finding a minimum s − t cut
in the network G that can be described as follows

argmin
C, s−t cut

(k(C)) (1.10)

1.4.4 The general form of the network G we consider

The network G described in the previous section is determined up to the following terms

• The dimensions na = nx, nb = ny, nc = nd + 1 ∈ N

• The graph smoothness factor KG

• The graph matching cost function κG
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For the dimensions we impose naturally

na, nb ≥ 1 because nx and ny have to be ≥ 1

nc ≥ 2 because nd has to be ≥ 1

The remaining terms to discuss are KG and κG which are the ones, that determine the
capacity k. For numerous technical reasons, it is very comfortable to work with integer
capacities. On the one hand many efficient algorithms for the resolution of the minimum
s− t cut problem need integer capacities and on the other hand it is a big advantage for
the implementation. We do not have to use floating point algebra, which is in general
expensive in memory and in execution time. Beside this, it is not a serious restriction
because if we have capacities in R+, so we can multiply them by an arbitrary big constant
α ∈ R+ and the resulting network G′ has the same nature as G what concerns the values
of the s− t cuts, because they were all multiplied by α. Now we can round the capacities
in G′ = (V,E, k′) to the nearest number in N to obtain a network G′′ = (V,E, k′′) with
integer capacities. One can easily show that for every ǫ > 0, we can rapidly find a
constant α, such that the real value k(C) of a minimum s− t cut respective to G′′ is less
than (1 + ǫ) times the value of the minimum s− t cut in G. It is even possible to find a
constant α such that a minimum s− t cut in G′′ is also a minimum s− t cut in G, but
this is more difficult.
Anyway, in reality the integrality assumption is not restrictive because all modern com-
puters store capacities as rational numbers and we can always transform them to integer
numbers by multiplying them by a suitable large constant.

So this integrality assumption induces the following restriction on KG and κG

KG ∈ N

κG has to be a function of type: κG : V ′ \ VB −→ N

This are all assumptions we make on the network G. So we do not force the graph
matching cost function κG to have a certain structure. Thanks to this, our further dis-
cussion will be valid for a wide variety of graph matching cost functions.

Recapitulating, a general network G in this document that corresponds to a stereo prob-
lem, has constant positive integer capacities on smoothness arcs and arbitrary positive
integer capacities on consistency arcs. For further analysis it is interesting to note that
the graph smoothness factor is usually relatively small, to say ≤ 10.
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2 Preliminaries concerning flows and s − t

cuts

Currently, the most efficient algorithms for solving an s−t cut problem first solve its dual
problem which is the maximum flow problem (from s to t) (1). This chapter introduces
basic definitions, notations and properties concerning flow and s − t cut problems and
shows important relationships between these two problems.

2.1 Flows

Let G = (V,E, k) be a directed network without loops or multiple arcs (2) and with an
integer capacity function k. Further, we assume that the set of edges E is completed
by the reversal edges, i.e. if (v,w) ∈ E so also (w, v) ∈ E. This assumption is not
restrictive because we can for every arc (v,w) ∈ E with (w, v) 6∈ E, add the reversal arc
(w, v) with zero capacity to the set E. This completion of the set E evidently does not
change the nature of the network with respect to cuts. As usual, we have two terminals
s, t ∈ V (with s 6= t), where s is called source and t sink.

The maximum flow problem can be stated in the following way: In a network G =
(V,E, k), we wish to send as much flow as possible from one special node s to another
special node t, without exceeding the capacity k(e) of any arc e ∈ E. More formally, we
define such a flow ϕ in G in the following way.

Definition 2.1.1 (Flow). A flow ϕ from s to t in a network G = (V,E, k) is a function

ϕ : E −→ R that satisfies

i) Skew symmetry: ϕ(v,w) = −ϕ(w, v) ∀ (v,w) ∈ E

ii) Capacity constraint: ϕ(v,w) ≤ k(v,w) ∀ (v,w) ∈ E

iii) Flow conservation:
∑

e∈ω+(v)

ϕ(e) = 0 ∀ v ∈ V \ {s, t}

When there is no danger of ambiguity we often call ϕ simply ≪flow in G≫.

(1)For further information between the primal-dual relation of flow and s− t cut problems see [16]. In this
work, we have not adopted a linear programming perspective and it should be possible to understand
this document without preliminary knowledge in dualization of linear programs.

(2)Anyway, loops would make no difference in the value of any cut and multiple arcs can be replaced by a
single arc whose capacity is the sum of the capacities of the corresponding multiple arcs. By removing
the loops and handling the multiple arcs as described, the obtained network has the same nature with
respect to cuts as the original network.
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We will interpret the function ϕ in the following way. For e ∈ E, if ϕ(e) ≥ 0 so we say
that a flow of value ϕ(e) goes through the arc e. And if ϕ(e) < 0, we say that no flow
is passing through e. So f trivially satisfies the following property.

Property 2.1.2. For every arc e ∈ E, either no flow passes through e or no flow passes
through eR.

We further make the following definitions.

Definition 2.1.3. For v ∈ V , we define the flow entering in v as

ϕ−(v) =
∑

e∈ω−(v)

max{ϕ(e), 0}

In an analogue manner we define the flow exiting from v as

ϕ+(v) =
∑

e∈ω+(v)

max{ϕ(e), 0}

With this definition the flow conservation property iii) can be written as

iii) ϕ−(v) = ϕ+(v) ∀ v ∈ V \ {s, t}

With this new formulation of property iii), it is easy to understand why we call property
iii) the ≪flow conservation property≫, because the flow entering in v has to be equal to
the flow exiting from v.

In network flow literature (for example [9]) it is also common not to impose skew sym-
metry on a flow (note that in this case, the flow function only returns positive values and
the flow conservation property has to be reformulated). The flow formulation without
skew symmetry is somewhat more intuitive because we do not have to give a special
interpretation to the case ϕ(e) < 0 because flows are always positive in this formulation,
but here we would have the disadvantage that it is possible to have a strictly positive
flow on an arc e ∈ E and on the same time to have a strictly positive flow on its re-
versal arc eR. In this case, it is always possible to reduce the flows ϕ(e) and ϕ(eR) by
min{ϕ(e), ϕ(eR)} to get a new flow with a value of 0 on e or eR. So by this technique
every flow can be transformed into a flow satisfying property 2.1.2. This justifies that
the skew symmetry (which forces the flow to satisfy this property) is not restrictive.

We have chosen the formulation with the skew symmetry because it is often much easier
to handle flows satisfying property 2.1.2.

Definition 2.1.4 (Saturation of an arc by a flow). We say that a flow ϕ in G saturates
e ∈ E if

ϕ(e) = k(e)
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Notation 2.1.5. Let V1, V2 ⊂ V be two subsets of V . So we define the flow from V1 to
V2 to be the following term:

ϕ+(V1, V2) :=
∑

e∈ω+(V1,V2)

ϕ+(e) (3)

Additionally, we use the notation ϕ−(V1, V2) = ϕ+(V2, V1).

Notation 2.1.6. Let V1, V2 ⊂ V be two subsets of V . So we define the flow between V1

and V2 to be the following term:

ϕ(V1, V2) :=
∑

e∈ω+(V1,V2)

ϕ(e) = ϕ+(V1, V2) − ϕ−(V1, V2)

Note that the flow between V1 and V2 is in general not the same value as the flow
between V2 and V1. More precisely, we have ϕ(V1, V2) = −ϕ(V2, V1). With this notation,
the point iii) of the definition of a flow can be written as

iii) ϕ(V \ {v}, v) = 0 ∀ v ∈ V \ {s, t}

We now introduce the value of a flow ϕ in G which is the amount of flow that is send
by ϕ from s to t.

Definition 2.1.7 (Value of an s− t flow ϕ in G). The value k(ϕ) of an s− t flow ϕ in
G = (V,E, k) is defined as

k(ϕ) = ϕ(V \ {t}, t)
and corresponds to the amount of flow transported (by ϕ) from s to t.

It is easy to show by the flow conservation property that we have

k(ϕ) = ϕ(V1, V1) ∀ V1 ⊂ V \ {t} with s ∈ V1 (2.1)

This notion allows us finally to formulate the maximum flow problem. This problem is
about finding, in the set of all flows from s to t in G, a flow of maximum value. To
ensure that a maximum flow from s to t on a network G exists, we have to assume that
G contains no path from s to t consisting solely of arcs of infinity capacity.

In a next step, we will introduce the residual network of G with respect to the flow ϕ

which is an ancillary network that allows to handle easily the possibilities of changing
the flow ϕ.

Definition 2.1.8 (Residual network of G with respect to ϕ). Let ϕ be a flow in G. The
residual network Gϕ = (V,E, kϕ) of G = (V,E, k) with respect to ϕ has the same vertices
and edges as the original network G but different capacities. The capacity function of
the residual network is called ≪residual capacity≫ and is defined in the following way:

kϕ(e) = k(e) − ϕ(e) ∀ e ∈ E

(3)Where ω+(V1, V2) = ω+(V1)∩ω−(V2). In an analogue manner we define ω−(V1, V2) = ω−(V1)∩ω+(V2) =
ω+(V2, V1) and ω(V1, V2) = ω(V1) ∩ ω(V2) = ω+(V1, V2) ∪ ω−(V1, V2).
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Any flow ϕr in the residual network Gϕ corresponds to a possible change of the flow ϕ,
that transforms ϕ into a flow ϕ′ on G in the following way.

ϕ′(v,w) = ϕ(v,w) + ϕr(v,w) ∀ (v,w) ∈ E

and we write
ϕ′ = ϕ⊕ ϕr

One can easily verify that this way of transforming flows from Gϕ into G gives in fact a
one-to-one correspondence between flows in G and in Gϕ. Further we have the following
property.

Property 2.1.9.

ϕ′(V1, V2) = ϕ(V1, V2) + ϕr(V1, V2) ∀ V1, V2 ⊂ V

In particular the value of the flow ϕ′ is equal to the value of ϕ plus the value of ϕr (i.e.
k(ϕ′) = k(ϕ) + k(ϕr)).

So we can increase the value of an existing flow ϕ on G by finding a flow ϕr in the
residual network Gϕ with positive value and by transforming this flow into the flow ϕ′.
Such a flow ϕr is called an augmenting flow. A simple way of applying this technique
is by finding a path of non-saturated arcs in the residual network and by augmenting
the flow along this path. Such a path is called an augmenting path and the value of the
flow which can be transported through this path is called the capacity of the augmenting
path. The capacity of an augmenting path corresponds therefore to the minimal capacity
of the arcs on the path.
By the relationship between flows in the residual network and flows in the original
network one can easily verify that we have the following theorem.

Theorem 2.1.10. Let ϕ be a flow in G. So

ϕ is a maximum flow ⇔ ∄ augmenting path in Gϕ

The following property shows a very direct relationship between the original and residual
network concerning s− t cuts:

Property 2.1.11. Let ϕ be a flow in the network G and C = [Vs, Vt] an s− t cut in G.
So we have

kϕ(C) = k(C) − k(ϕ)

Proof. This property is a consequence of the definition of the residual network and 2.1.

kϕ(C) =
∑

e∈ω+(Vs)

kϕ(e)

=
∑

e∈ω+(Vs)

(k(e) − ϕ(e))

=
∑

e∈ω+(Vs)

k(e) −
∑

e∈ω+(Vs)

ϕ(e)

= k(C) − k(ϕ)
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The previous property thus says that the values of s− t cuts in Gϕ differ by a constant
from their values in G. Therefore, minimum s− t cuts in Gϕ are also minimum in G.

2.2 s − t cuts

In this section we will introduce some notations and properties of s− t cuts in a network
G = (V,E, k).

We begin by defining a partial order ≪�≫ on s− t cuts.

Definition 2.2.1 (The partial order ≪�≫ on s − t cuts). Let C1 = [V 1
s , V

1
t ] and C2 =

[V 2
s , V

2
t ] be two s − t cuts in G. If V 2

s ⊂ V 1
s , we say that C1 is greater than C2 (resp.

C2 is smaller than C1) and we write C2 � C1.

This way of comparing s−t cuts, leads to a natural definition for unions and intersections
of s− t cuts.

Definition 2.2.2 (Union and intersection of s − t cuts). Let C1 = [V 1
s , V

1
t ] and C2 =

[V 2
s , V

2
t ] be two s− t cuts in G. We define the union and intersection of two s− t cuts

in the following way

C1 ∪ C2 = [V 1
s ∪ V 2

s , V
1
t ∩ V 2

t ]

C1 ∩ C2 = [V 1
s ∩ V 2

s , V
1
t ∪ V 2

t ]

One can easily verify that we have the following property.

Property 2.2.3. Let C̃ = [Ṽs, Ṽt] be a minimum s− t cut in G and C = [Vs, Vt] be any
s− t cut in G (not necessarily minimum). So we have

k(C̃ ∩ C) ≤ k(C) and

k(C̃ ∪ C) ≤ k(C)

As a direct consequence of the previous property we have.

Property 2.2.4. Let C̃1 = [Ṽ 1
s , Ṽ

1
t ] and C̃2 = [Ṽ 2

s , Ṽ
2
t ] be two minimum s − t cuts in

G. So C̃1 ∪ C̃2 and C̃1 ∩ C̃2 are also minimum s− t cuts.

This property implies that in the set of all solutions of a minimum s − t cut problem
there is always a maximal and a minimal solution with respect to the partial order �.
The maximal solution can be seen as the union of all minimum s−t cuts and the minimal
solution as their intersection. Usually we try to solve the problem 1.10 by finding the
maximal minimum s − t cut. We will often refer to this cut as the minimum s − t cut
with the highest disparities or nearest minimum s− t cut because it corresponds to the
s− t cut with the lowest deepness.
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2.3 Relationships between flows from s to t and s − t cuts

This section gives a short summary of the main results concerning the relationships
between flows from s to t and s− t cuts.

Property 2.3.1. Let C = [Vs, Vt] be an s− t cut in G and ϕ a flow in G. So we have

k(ϕ) ≤ k(C)

Proof. This property is an immediate consequence of the dual relation between the
minimum s− t cut problem and the maximum flow problem, but it can also be verified
in a direct way.

k(ϕ) = ϕ(Vs, Vt) ≤ k(Vs, Vt) = k(C)

Theorem 2.3.2. Let C̃ = [Ṽs, Ṽt] be a minimum s− t cut in G and ϕ̃ a maximum flow
in G. So we have

k(ϕ̃) = k(C̃)

This theorem shows the relation of strong duality between the minimum s − t cut and
the maximum flow problem. It can also be verified by a more direct way without the
use of linear programming. The interested reader finds a proof in [9].

Property 2.3.3.

a) Let ϕ̃ be a maximum flow from s to t in G and C̃ = [Ṽs, Ṽt] a minimum s− t cut in
G. So ϕ̃ saturates every arc in ω+(Ṽs, Ṽt) and as a consequence of the skew symmetry
of a flow, we have that no flow is passing on the arcs ω−(Ṽs, Ṽt). In this situation we
say that ϕ̃ saturates the s− t cut C̃.

b) Conversely, if C is an s − t cut that is saturated by a flow ϕ, so C is a minimum
s− t cut and ϕ is a maximum flow in G.

By combining the previous results we have that a flow ϕ from s to t is maximum if and
only if it saturates an s− t cut C. In this case, C is a minimum s− t cut.

Passage from a maximum flow to a minimum s − t cut

Finally we introduce a simple algorithm that allows, on the base of a maximum flow ϕ̃

from s to t, finding the maximal (in the sense of the partial order ≪�≫) minimum s− t

cut C̃ = [Ṽs, Ṽt].

This algorithm is a labelling algorithm in the residual graph Geϕ which will successively

label the vertices in Ṽt. We begin by labelling the sink t and apply the following rule:
if v ∈ V is already labelled and there is an unlabelled vertex w, such that there exists
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an edge (w, v) with strictly positive residual capacity, so we label w. This labelling rule
can be applied for example in a breath-first-search or also in a depth-first-search way to
obtain an algorithm of complexity O(|E|).

The verification that this algorithm effectively finds the maximal minimum s − t cut
is very direct. Firstly, the labelling algorithm will never label a vertex in Ṽs because
thanks to property 2.3.3 we know that all edges in ω+(Ṽs, Ṽt) are saturated and therefore
have a residual capacity of zero. So if we denote by V1 the vertices labelled at the end
of the algorithm, then we have V1 ⊂ Ṽt. On the other hand we have that all edges in
ω−(V1) have a residual capacity of zero (if not, it would have been possible to continue
the labelling process). But that means that the s − t cut constructed by the algorithm
C = [V1, V1] is saturated by ϕ̃ and thanks to the second part of property 2.3.3 we know
that C is a minimum s − t cut. Because C̃ is maximal respective to the partial order
≪�≫, we have that Ṽt ⊂ V1. Finally we must have V1 = Ṽt and therefore C = C̃.
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3 Algorithms for the resolution of the
minimum s − t cut problem

In this chapter we will give an overview of current maximum flow algorithms and analyze
them for the particular case of reconstruction networks. Furthermore, we introduce two
preprocessing algorithms we have developed for diminishing the worst-case complexities
of various maximum flow algorithms on reconstruction networks and for accelerating
them in practice.

3.1 Introduction

Currently, the most efficient algorithms for solving minimum s − t cut problems solve
first the dual problem of 1.10 which is the maximum flow problem (from s to t). In the
previous chapter we saw how we can finally pass in O(|E|) time from a maximum flow
to a minimum s− t cut. The maximum flow problem can be solved in polynomial time,
i.e. in a complexity of O(polynome(|V |, |E|)), but we will also discuss some algorithms
that are only pseudopolynomial (their worst-case complexity depends typically on ca-
pacities), because according to the problem we have to solve, it can be advantageous to
use such an algorithm instead of a strongly polynomial one.

There exists numerous techniques for solving maximum flow problems. Nevertheless
almost all flow algorithms up to date for general networks belong to one of the two
following classes:

1. Augmenting path algorithms. These algorithms satisfy the flow conservation
property at the end of every step. They incrementally increase the flow by aug-
menting paths (sometimes by several augmenting paths at ≪the same time≫).

2. Preflow-push algorithms. These algorithms do not satisfy the flow conservation
property during their execution. They ≪flood≫ the network such that some vertices
have flow excess. Then they try to send as much excess as possible to the sink.
Excess that cannot reach the sink, will be sent back to the source to eliminate all
excesses and thus finally satisfying the conservation property.

Before analyzing algorithms belonging to these two classes for reconstruction networks,
we do some preliminary work concerning the complexity analysis in the next section.
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3.2 Preliminaries concerning the complexity analysis

In this section, we will introduce some notations for complexity analysis in general
networks as well as some special notations for reconstruction networks. Additionally, we
will exploit some important properties of reconstruction networks that allow us to give
better complexity bounds for some algorithms on these particular networks.

3.2.1 Basic notations

General networks

We introduce the following notations that will be useful for complexity analysis in general
networks:

• n = |V | : number of vertices in the network

• m = |E| : number of edges in the network

• ζ : value of a maximum flow from s to t in the network

In network flow literature, it is often made the assumption that all capacities have to be
finite. This is in general not restrictive because we can replace infinite capacities by a
sufficiently large finite capacity without changing the minimum s− t cuts. For example
the value of an arbitrary finite s − t cut (1). So if necessary, we can always assume
that the networks we analyze have finite capacities, and in this case we introduce the
following notation:

• U = max
e∈E

k(e) : highest capacity in the network

So if we work in a network with infinite capacities, then U is simply the maximal ca-
pacity of the corresponding network where we have eliminated the infinite capacities as
described before.

Reconstruction networks

For reconstruction networks, we introduce the following notation:

• Uconsistency = max
e∈Econsistency

k(e) : the highest capacity in Econsistency

Additionally, it is important to note that a reconstruction network G is sparse i.e.
O(m) = O(n). This is a direct consequence of the fact that apart from the two ter-
minals, every vertex has at most six neighbors.

(1)It is always possible to apply this procedure because we have assumed that the network on which we
work, has no augmenting path of infinite capacity. It is easy to see that this is equivalent to the existence
of an s − t cut of finite value. Finding an s − t cut of finite value can be done by a labelling algorithm
in O(m).
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3.3 Upper bounds of the maximum flow value and
preprocessing in a reconstruction network

Several algorithms depend on the value of a maximum flow ζ, but this value is in most
cases unknown and therefore normally replaced in the worst case complexity by a known
upper bound of ζ easily calculable. By property 2.3.1, we can use the value of an arbi-
trary s− t cut as upper bound of ζ.

In general networks ζ is typically bounded by the trivial s − t cut [{s}, V \ {s}] which
has a value of at most nU (as in the worst case s has outgoing arcs of capacity U

to every other vertex). But in reconstruction networks we can do better. One simple
method is to fix an α ∈ {0, 1, . . . , nc − 2} and to choose the s − t cut C = [Vs, Vt] with
Vs = {s} ∪ {(a, b, c) ∈ V ′ | c ≤ α}. This cut contains exactly nanb arcs which all belong
to Econsistency and we have therefore

k(C̃) ≤ k(C) ≤ nanbUconsistency

This bound is clearly better than nU , especially because n was replaced by nanb. Un-
fortunately, the term Uconsistency may be very big (recall that we made no assumptions
on the capacities of the consistency arcs Econsistency).

Therefore we introduce now a method which allows eliminating the dependency on
Uconsistency of the upper bound for the maximum flow value. As every s − t cut of
finite value in a reconstruction network contains at least one arc of Econsistency, we have
to perform changes in the network to obtain upper bounds for the maximum flow value
that are independent of Uconsistency. This can be done by preliminary augmentation of
the flow through augmenting paths that are easy to find. Hereafter we apply a maxi-
mum flow algorithm on the resulting residual network (by property 2.1.11 we are sure
to still find a minimum s− t cut in G by this preliminary step). We call this technique
of preliminary augmentation of the flow ≪preprocessing≫. The preprocessing algorithms
we use, are fast algorithms, i.e., their complexity is inferior to the complexity of the
flow algorithm applied afterwards and therefore they do not contribute to the worst case
complexity of the combined algorithm.

We will now introduce two preprocessing algorithms.

3.3.1 Preprocessing algorithm 1

This algorithm sends as much flow as possible from s to t without using smoothness
arcs. So flow is only sent straight forward to the sink. Algorithm 1 gives a pseudocode
that describes how this preprocess algorithm constructs such a maximum flow (that we
will call ϕ) on a reconstruction network G = (V,E, k).

The first for-loop will be repeated nanb times, line 3 needs to compare nc−1 values, line 4
and 5 can be performed in constant time, the second for-loop will be repeated nc−1 times
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Algorithm 1 First preprocessing algorithm on reconstruction networks

1: procedure Preprocess 1(G) ⊲ where G = (V,E, k) is a reconstruction network
2: for (a, b) ∈ DG do
3: λ = min

e∈Econsistency(a,b)
k(e)

4: ϕ(s, (a, b, 0)) = λ

5: ϕ((a, b, nc − 1), t) = λ

6: for e ∈ Econsistency(a, b) do
7: ϕ(e) = λ

8: end for
9: end for

10: G = Gϕ
11: end procedure

and finally line 7 can be executed in constant time. Therefore we have a complexity of
O(nanb)·O(nc) = O(n) for this preprocessing algorithm. So this preprocessing algorithm
will not be a bottleneck operation when applying afterwards a maximum flow algorithm.

Bounding the value of the remaining flow

The main idea of this preprocessing algorithm is that after having performed it, we
have that for every (a, b) ∈ DG there is an arc e(a,b) = ((a, b, c(a,b)), (a, b, c(a,b) + 1)) ∈
Econsistency(a, b) with capacity 0. These arcs correspond to the arcs that were saturated
by the augmenting operations of the preprocessing. We define now the following valid
s− t cut C:

C = [Vs, Vt]

where Vs = {s} ∪ {(a, b, c) ∈ V ′ | c ≤ c(a,b)}

The only consistency arcs in the cut C are arcs of the type e(a,b) which have capacity 0.
Therefore, the only arcs in C with non-zero capacities are smoothness arcs (all of them
have capacity KG) and it is easy to show that we have

k(C) ≤ 2nKG

Thus after applying the first preprocessing algorithm, we know that the maximum flow
value ζ of the new graph G is bounded by O(nKG) which is independent of Uconsistency.
Note that the graph smoothness factor KG is normally a very little value (usually be-
tween 1 and 10).

3.3.2 Preprocessing algorithm 2

The second preprocessing algorithm we introduce now, applies an idea similar to the
first one. Here we will not ignore the smoothness arcs completely but we will take at
least half of them into consideration.

41



This algorithm simply sends as much flow as possible from s to t without using smooth-
ness arcs parallel to the b-axis. So smoothing only happens in a-direction.

Parallels with classical stereo algorithms

The solution of this problem is very similar to solutions constructed with the classical
stereo algorithms using epipolar lines. To say that we get already a very interesting
solution but with probably a lot of discontinuities in the b-direction. Because of this
problem, numerous methods were proposed to ≪correct≫ solutions found by epipolar
methods such that they show less discontinuities. Unfortunately, it was rather difficult
to smooth the solutions in a global manner. The flow formulation shows here a big
advantage. After having applied the second preprocessing algorithm, we do not only get
a solution of the reconstruction problem (without smoothing in b-direction) but also a
residual network on which we can do further work. After the preprocessing, we will sim-
ply continue with a maximum flow algorithm on the graph (this time with all smoothness
arcs) that will smooth the solution and finally achieve the global optimum of the original
flow problem.

Efficient implementation of the algorithm

The point of this preprocessing algorithm is that we can determine rapidly a maximum
flow of the subproblem without smoothness arcs in b-direction. We will now discuss
how to do this. Figure 3.1 a) shows the graph that corresponds to the mentioned
subproblem. Each horizontal slice of this problem gives a new maximum flow problem
independent of the others. In this way we get nb maximum flow problems of the type as
illustrated in figure 3.1 b). We will index these problems by their b-values. For a fixed
b ∈ {0, 1, . . . , nb − 1} we will denote the graph corresponding to the problem on level b
by Ĝb.

These problems have the particularity that the corresponding graph is s− t planar, i.e.
the graph is planar and it is possible to give a planar representation where the source s
and the sink t lie both on the boundary of the unbounded face (figure 3.1 b) gives such
a representation for our problem) (2).

Let Ĝ = (V̂ , Ê, k̂) be such an s− t planar network as illustrated in figure 3.1 b). We will
now see how we can solve this maximum flow problem by a shortest path technique on
a directed dual-like graph (3) of Ĝ obtaining a complexity of O(n log(n)). The method
we introduce, uses the same idea as the algorithm explained in [9] for undirected s − t

planar graphs.

(2)For more information about planarity of graphs, see [15].
(3)For more information on dual graphs, see [15].
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Figure 3.1: Image a) shows the graph of the subproblem that corresponds to the second
preprocessing algorithm. This problem can be easily divided into nb problems
of type b).
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We begin by constructing a network G∗ = (V ∗, E∗, l∗) (where l∗ : E∗ −→ R+ is a length
function) as illustrated in figure 3.2.

Figure 3.2: The graph G∗ that corresponds to Ĝ.

We have a one-to-one correspondence between the edges of finite value in Ĝ and the
edges in G∗ in the following way. To an edge e ∈ Ê ⊂ E with k(e) < ∞, we associate
the edge in e∗ ∈ E∗ that crosses e (in the geometric representation as illustrated in figure
3.2) such that (e, e∗) is right-handed. It is easy to see that this rule effectively defines
a one-to-one correspondence. Finally, we define the length function l∗ in the following
manner:

l∗(e∗) = k(e) ∀ e∗ ∈ E∗

In words, the length of an edge in G∗ is equal to the capacity of its corresponding edge in
Ĝ. Note that l∗ is effectively a positive length function as k is a positive capacity function.

Now we calculate the distances from s∗ to all other vertices in G∗ (4). For v∗ ∈ V ∗, we
denote by d∗(v∗) the distance from s∗ to v∗. With an analogue reasoning as in [9] p.260
ff we have the following property:

Property 3.3.1. The distance d∗(t∗) from s∗ to t∗ is the value of a minimum s− t cut
in Ĝ. Furthermore a minimum s− t cut Ĉ = [V̂s, V̂t] in Ĝ can be constructed by defining
V̂s as the set of the left side of a shortest path p̂ from s∗ to t∗ as illustrated in figure 3.3.

(4)The distance from s∗ to v∗ ∈ V ∗ in G∗ is defined as the length of the shortest path from s∗ to v∗ in G∗.
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Figure 3.3: Finding a minimum s− t cut Ĉ = [V̂s, V̂s] in Ĝ by a shortest path p̂ from s∗

to t∗ in G∗.

This property says that we can find rapidly a minimum s− t cut in Ĝ by a shortest path
in G∗, but to be able to construct the residual network after the preprocessing, we have
to find not only a minimum s− t cut, but also a corresponding maximum flow.
Here too, we can use the same idea that is already known for undirected planar networks
and is explained in [9]. With an analogue proof as in [9], we can show that the following
property is valid:

Property 3.3.2. The flow ϕ as defined below is a maximum flow in G.

ϕ(e) =

{
d∗(v∗2) − d∗(v∗1) ∀ e ∈ E with k(e) <∞
−ϕ(eR) ∀ e ∈ E with k(e) = ∞

where (v∗1 , v
∗
2) = e∗

This property explains finally how we can get the augmenting flow ϕ with this method.

The second preprocessing algorithm can thus be resumed by the pseudocode described
in algorithm 2. The complexity of this algorithm is O(n log(nanc)). The first for-loop
is repeated nb times. The construction of the graph G∗ in line 3 can easily be done
in O(nanc) time by taking advantage of the regular grid structure of Ĝb. By applying
Dijkstra’s algorithm for shortest paths, we can perform line 4 in O(nanc log(nanc)) time
(5). The second for-loop will be repeated O(nanc) times and line 6 needs only constant

(5)We can achieve this bound by implementing Dijkstra’s algorithm with a binary heap or a Fibonacci
heap. See [9] for more information on Dijkstra’s algorithm and its implementation.
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time for each execution. Finally, we need O(n) to determine the residual network Gϕ.
So the bottleneck operation in the first for-loop is line 4 and we get a complexity of
O(nbnanc log nanc) = O(n log(nanc)) for the whole preprocessing algorithm. Note that
this complexity is inferior to O(n log(n)) and will not slow down the combined complex-
ity if we apply afterwards a maximum flow algorithm.

Algorithm 2 Second preprocessing algorithm on reconstruction networks

1: procedure Preprocess 2(G) ⊲ where G = (V,E, k) is a reconstruction network
2: for b = 0 to nb − 1 do
3: Construct the graph G∗ = (V ∗, E∗, l∗) corresponding to Ĝb = (V̂b, Êb, k̂b).
4: Calculate the distances d∗ between s∗ and all other vertices in G∗.
5: for e ∈ Êb do
6: ϕ(e) = d∗(v∗2) − d∗(v∗1) where (v∗1 , v

∗
2) = e∗

7: end for
8: end for
9: G = Gϕ

10: end procedure

Some remarks on the resolution method Note that in a more general manner, we can
simply construct the s − t dual of the graph Ĝ and define a one-to-one correspondence
between all the edges (not only those with finite capacity) of Ĝ and its s− t dual G∗ (6).
An edge e∗ ∈ E∗ that corresponds to an edge e ∈ Ê ⊂ E with k(e) = ∞, will simply get
a length of ∞. So this will not change the distances from s∗ to any other vertex in V ∗.
Note that this dual-technique can be applied to any s − t planar directed graph. But
if we do not work on reconstruction networks, it may be more difficult to construct the
s− t dual graph G∗.

Bounding the value of the remaining flow

In the same way as in the first preprocessing algorithm, we apply the second preprocess-
ing procedure and then introduce an s − t cut that allows to bound the remaining
maximum flow from s to t. As for every b ∈ {0, 1, . . . , nb − 1} we have solved the maxi-
mum flow problem on Ĝb, we can determine for each of these networks a minimum s− t

cut Ĉb = [V̂ b
s , V̂

b
t ] by the algorithm introduced in 2.3. We now define the following valid

s− t cut C on G:

C = [Vs, Vt]

where Vs =

nb−1⋃

b=0

V̂ b
s

(6)The s− t dual of the graph bG is the same as the graph G∗ we introduced before, with the difference that
it is completed with the missing reversal arcs, i.e. we have the property that if e∗ ∈ G∗ so e∗R ∈ G∗.
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The s− t cut C contains no smoothness arcs parallel to a with positive capacity as well
as no consistency arcs with positive capacity. This is a direct consequence of the fact
that the cuts Ĉb are minimum in their corresponding network Ĝb.

Now it is easy to show that we have

k(C) ≤ nKG

So with this preprocessing too, we know that after applying it, the remaining maximum
flow value ζ is bounded by O(nKG). Even though this is the same complexity bound as
with the first preprocess algorithm, the second one gives in practice much better results.

Variations of the algorithm

The second preprocessing algorithm we discussed was based on the preliminary elimi-
nation of smoothness edges parallel to the b-direction. This algorithm can be applied
in an analogue manner by preliminary elimination of smoothness edges parallel to the
a-direction (with a complexity of O(n log(nbnc))). If we use the first version of this
algorithm so we say that we apply the second preprocessing algorithm with respect to
the b-direction and in the second case we call it the second preprocessing algorithm with
respect to the a-direction.

An interesting practical application is to apply first the second preprocessing algorithm
with respect to the b-direction and then with respect to the a-direction (note that the
complexity of this combination is still inferior to O(n log(n))). Unfortunately, it is in
general not possible to give better bounds on the remaining maximum flow value ζ than
nKG but the empirical behavior of this algorithm shows to be very interesting.

By repeating the second preprocessing algorithm alternatively with respect to the b-
direction and to the a-direction we could try to find better initial flows, but there are
several problems with this method. Theoretically, even if we continue this procedure
till we cannot augment the flow anymore by the second preprocessing algorithm, we
will finally obtain in general a non-optimal solution and we cannot give a better bound
on the remaining maximum flow value than nKG. And practically, the iterations after
having applied the second preprocessing algorithm once with respect to the b-direction
and then with respect to the a-direction find in general very little additional flow.

Table 3.3.2 gives the results of three empirical tests on different problems. One can see
that applying two iterations of the second preprocessing algorithm seems to be a very
interesting method. Here we can hope to get an initial flow of 95% of the optimum.
Note that the quality of the preprocessing results depends on the graph smoothness
factor KG. The smaller KG is, the better will be the result. Our tests were made with
smoothness factors around 5, which is a very typical choice.
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Optimum Preprocess1
Preprocess 2

i=1 i=2 i=3 i=4

Problem 1
853047 458758 718351 811148 811783 811799

100% 53.8% 84.2% 95.1% 95.2% 95.2%

Problem 2
288477 183278 248176 278636 278707 278708

100% 63.5% 86.0% 96.6% 96.6% 96.6%

Problem 3
934674 740437 839591 911959 912144 912144

100% 79.2% 89.8% 97.6% 97.6% 97.6%

Table 3.1: Empirical results of the first and second preprocessing algorithm (where i

represents the number of iterative applications of the second preprocessing
algorithm). The upper values represent the flow values found by the algo-
rithms and the lower values their percentage with respect to the maximum
flow value.

3.4 Augmenting path algorithms

3.4.1 Introduction

Augmenting path algorithms are known to be the first algorithms developed for the res-
olution of the maximum flow problem. They try to augment flow by finding augmenting
paths (see 2.1 for information about augmenting paths). The primary question with
this technique is how we have to choose augmenting paths to get efficient algorithms.
Augmenting path algorithms typically apply one of the following methods:

1. Choose the first augmenting path you find.

2. Choose paths that allow to transport a ≪sufficiently large≫ amount of flow.

3. Choose shortest augmenting paths such that the distance between source and sink
monotonically increases during the algorithm.

The first method is the simplest one and allows finding augmenting paths very quickly.
Unfortunately, it is possible that we have to find a very large number of augmenting
paths to obtain finally a maximum flow. Because the augmenting paths we use have
no particular structure, we typically cannot do better than to limit the number of aug-
menting paths we have to find by ζ because each augmenting path augments the flow of
at least one unit (since the capacities are integral) and the total augmentation that will
be performed is ζ. Therefore the complexities of these algorithms typically depends on
U and thus are only pseudopolynomial.

Algorithms of the second type try to limit the dependence on capacities. By choosing
augmenting paths with relatively large capacities, we have to perform less augmenta-
tions. We will not get rid off the problem that the complexity depends on U , but while
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algorithms of the first type typically depend linearly on U , we can reduce this depen-
dency to log(U). On the other hand, it is normally more expensive to find paths with
large capacities.

With the third method, we are able to eliminate the dependence upon U of the com-
plexity and thus to obtain polynomial time algorithms. These algorithms typically work
through a number of phases where at each phase, we try to find a family of shortest aug-
menting paths with the property that after having augmented the flow on these paths,
the distance between source and sink in the new residual network increases. The main
idea of these algorithms is that we can bound the number of phases by n, because if the
distance between source and sink is bigger than n − 1, so there will be no augmenting
path from s to t in the residual network. Additionally, finding an appropriate family of
augmenting paths as explained before, as well as the augmentation on this family, can be
done in strongly polynomial time. Therefore we are able to obtain strongly polynomial
maximum flow algorithms with this method.

We will now rapidly introduce some important augmenting path algorithms with their
worst-case complexity in general networks and reconstruction networks.

3.4.2 General labelling algorithm and Edmonds-Karp algorithm

The general labelling algorithm simply tries to find an augmenting path from the source
to the sink by applying a labelling technique. Finding an augmenting path in this way
has thus a complexity of O(m). By the previous discussion, we know that the number
of iterations for finding augmenting paths is bounded by the maximum flow value ζ. In
general networks, this algorithm has therefore a complexity of

O(mζ) ≤ O(nmU)

In reconstruction networks, we can combine this with one of the presented preprocessing
algorithms to get a complexity of

O(nζ) ≤ O(n2KG)

By applying a breath-first-search rule for the labelling subroutine used for finding an
augmenting path, we can find a shortest augmenting path in O(m). This rule leads
to the Edmonds-Karp algorithm(7) which is an augmenting path algorithm of the third
type. The Edmonds-Karp algorithm was developed in 1970 and is the oldest known
strongly polynomial time algorithm for the resolution of the maximum flow problem.
The worst case complexity of this algorithm on general networks is

O(nm2)

(7)The Edmonds-Karp algorithm is also called successive shortest augmenting path algorithm.
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For additional information see for example [9] or [10]. Because the Edmonds-Karp
algorithm is a particular case of the general labelling algorithm, we know that its com-
putational time is also bounded by O(mζ). Therefore we have the following complexity
bounds:

O(min{nm2,mζ}) ≤ O(min{nm2,mnU}) on general networks

O(min{n3,mζ}) ≤ O(min{n3, n2KG}) on reconstruction networks in combi-
nation with a presented preprocessing
algorithm

As in reconstruction networks, we have in general KG ≤ 10 ≪ n, we see that the fact that
the Edmonds-Karp algorithm is strongly polynomial does not improve the theoretical
worst-case complexity on reconstruction networks.

3.4.3 Algorithm of Dinic

The algorithm of Dinic is of the third type and can be seen as a speed up version of
the algorithm of Edmonds and Karp. Dinic introduced the idea to work with shortest
paths networks, called layered networks. To construct the corresponding layered network
Gl(V,El, kl) to a network G = (V,E, k), we begin with calculating the distances from
each node v ∈ V to t (8). We denote the distance from v ∈ V to t by d(v). With this
notation we can define the layered network Gl as follows:

El = {(v,w) ∈ E | d(v) = d(w) + 1}
kl(e) = k(e) ∀ e ∈ El

It is easy to see that Gl is acyclic and contains all the shortest paths from s to t in G.
On a layered network Gl, we can construct a so called blocking flow which is defined as
follows:

Definition 3.4.1 (Blocking flow). A flow ϕ on a layered network Gl = (V,El, kl) is
called a blocking flow, if for every path p from s to t in Gl, we have that p contains at
least one arc e that is saturated by ϕ, i.e. ϕ(e) = k(e).

Note that a blocking flow does not have to be a maximum flow, but inversely a maximum
flow on a layered network is always also a blocking flow. The reason for the introduction
of the blocking flow lies in the following property:

Property 3.4.2. Let ϕ be a blocking flow in Gl. So the distance from s to t in Gϕ is
strictly greater than the distance from s to t in G.

The algorithm of Dinic works in phases and can be explained in the following way. At the
beginning of a phase i we have a residual network Gi (where we initialize with G1 = G)
and we construct its corresponding layered network (Gi)l. Then we determine a blocking

(8)The length function we use for calculating distances, gives a length of 1 to each arc e ∈ E with k(e) > 0
and ∞ to all other arcs.
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flow ϕi in (Gi)l and pass to the next residual network through this blocking flow, i.e.
Gi+1 = (Gi)ϕi

.

By property 3.4.2 we can deduce that Dinic’s algorithm finds a maximum flow in at
most n − 1 phases, because at the first phase the distance between s and t is ≥ 1 and
therefore ≥ n at phase n. Thus at phase n, there exists no simple augmenting path (9) in
the current residual network Gn and therefore no augmenting path in Gn. By theorem
2.1.10 we are sure to have found a maximum flow.
In each phase, Dinic’s algorithm has to find a blocking flow. Here the algorithm profits
from the fact that it is easier to find blocking flows than maximum flows in acyclic net-
works. It is possible to implement an algorithm that finds a blocking flow in an acyclic
network in O(nm) (10).

Therefore Dinic’s algorithm has the following worst-case complexities:

O(n2m) on general networks

O(n3) on reconstruction networks

Even if the theoretical complexities of Dinic’s algorithm and the Edmonds-Karp al-
gorithm are identical in sparse networks, it is in general preferable to apply Dinic’s
algorithm, as it has a lower constant factor in most cases.

Dynamic tree implementation for finding blocking flows

A dynamic tree is a rather complex data structure that was developed to improve the
worst-case complexity of several network algorithms (in particular algorithms for finding
blocking flows). By using dynamic trees, one can find a blocking flow in a complexity of

O(m log(n))

This allows to implement Dinic’s algorithm with the following complexities:

O(nm log(n)) on general networks

O(n2 log(n)) on reconstruction networks

Unfortunately, the dynamic tree data structure normally slows down the algorithm in
practice because of two reasons. At first this structure has a large overhead (a large
constant factor of work is associated with each operation in this structure). And still
more important is that it needs more time for operations that are in practice bottleneck
operations (whereas it is faster in the theoretical worst-case bottleneck operations). For
more information on dynamic trees, see [14].

(9)A path is called simple if it contains each arc of the network at most once.
(10)See for example [9] for additional information.
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3.4.4 Capacity scaling algorithm

Capacity scaling is a simple approach to ensure that we find augmenting paths with large
capacities. It is more a technique than simply a specific algorithm and finds numerous
applications in different algorithms. Nevertheless, we will introduce this technique by
the capacity scaling algorithm which was the first one using capacity scaling.
The capacity scaling algorithm passes through a number of phases where at each phase
it augments flow by augmenting paths. We introduce a value ∆ that corresponds to the
minimum amount of flow that an augmenting path has to be able to transport from the
source to the sink. For the first phase, we set ∆ = 2⌊logU⌋ and we work on the network
G∆ = (V,E, k∆) which only considers capacities greater than ∆ i.e.

k∆ : E −→ R+

k∆(e) =

{
k(e) if k(e) ≥ ∆

0 if k(e) < ∆

This network is called the ∆-network of G (11). We then apply the general labelling
algorithm to find a maximum flow in the network G∆. Having determined a maximum
flow ϕ1, we terminate the first phase, set ∆ = ∆

2 and we start the second phase where we
have to find a maximum flow by the general labelling algorithm in the new ∆-network
(Gϕ1)∆, and so on and so forth. In the last step, we have to find a maximum flow in
a residual network of the network G1 which is equal to G since we work with integer
capacities. This proves that we will effectively find a maximum flow with this algorithm.
It is easy to see that we will go through 1 + ⌊log(U)⌋ phases and additionally it can be
shown very directly that the maximum number of augmentations per phase is bounded
by O(m) (12). Taking into consideration that finding an augmenting path takes O(m)
time, we thus get an algorithm with a worst-case complexity on general networks of

O(m2 log(U))

If we use capacity scaling in Dinic’s algorithm, so we even can decrease the complexity
bound on general network to

O(nm log(U))

This variant of the algorithm is known as Gabow’s algorithm (see [9] for more informa-
tion). Anyway, on reconstruction networks the complexity reduces in both cases thanks
to their sparseness to

O(n2 log(U))

Here too, we can improve the worst-case complexity on reconstruction networks by
a preliminary application of one of the presented preprocessing algorithms. We have

(11)In literature you will often find the expression ∆-residual network of G with respect to a flow ϕ on G.
This corresponds in our context to the ∆-network of Gϕ.

(12)See [9] or [10] for further information.
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shown that after having applied such a preprocessing algorithm, we can find an s − t

cut C = [Vs, Vt] where the only arcs with positive capacities in C are smoothness arcs.
Therefore at this moment it is impossible to find an augmenting path with a capacity
≥ KG. So we can directly begin in the first phase of the capacity scaling algorithm with
∆ = KG, which implies a worst-case complexity bound in reconstruction networks of

O(n2 log(KG))

As already mentioned, capacity scaling can be used for other maximum flow algorithms
too. Another positive point of this technique is that it is in general easy to implement.

3.4.5 MA-ordering algorithm

The MA-ordering algorithm was introduced by the two Japanese researchers Satoru
Fjishige and Shigueo Isotani in 2003. We will just give the main ideas of the algorithm
(for further information see [12]).
The MA-ordering algorithm is an algorithm of the second type that iteratively increases
flow through augmenting flows. The abbreviation ≪MA≫ stands for maximum adjacency
and describes the way how this algorithm constructs augmenting flows. At each iteration
the algorithm begins by ordering the vertices from s to t by maximum adjacency which
is done as follows. Let G = (V,E, k) be the current residual graph. We introduce a set
W ⊂ V which contains all vertices that have already been ordered. At the beginning
of the MA-ordering we set v0 = s and W = {v0}. We will then iteratively introduce a
vertex v ∈ V \W into W . At the step i we have W = {v0, v1, . . . , vi−1}. We associate
to each vertex v ∈ V an adjacency value b(v) that is defined as follows:

b(v) =

{
k({v0, v1, . . . , vj−1}, vj) if v = vj ∈W

k(W,v) if v ∈ V \W
(3.1)

We then introduce a vertex vi ∈ V \W into W with the highest adjacency value, i.e.

vi = argmax
v∈V \W

b(v)

As defined in 3.1, a vertex that was introduced in W does not change its adjacency value
anymore. But we have to update the adjacency values of the neighbors of vi in V \W
for the next step of the MA-ordering.
We will stop the ordering at the moment when we introduce the sink t, for example
t = vk. Then we will build an augmenting flow on the partial graph of G that contains
only edges connecting vertices in W to vertices in W with higher indices. We thus obtain
an acyclic graph. It is possible to find in O(m) an augmenting flow ϕ in this network of
value k(ϕ) equal to

δ = min
v∈W

b(v) (13)

(13)See [12] for more information.
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It can also be shown that δ is at least as big as the capacity of any augmenting path
(and therefore also of the augmenting path with the highest capacity). This property
in combination with the flow decomposition theorem (14) allows to give a complexity
bound on the number of augmentations of O(m log(U)) (to get this bound we use a
typical reasoning that can be found for example in [9] p.211).
The inventors of the algorithm were able to show that the number of augmentations can
also be bounded by O(n log(ζ)) ≤ O(n log(nU)).

To efficiently implement the above described algorithm we need an appropriate data
structure for the MA-ordering. One can observe that the operations done by an MA-
ordering are the same as the ones used for finding a shortest path with Dijkstra’s algo-
rithm. Therefore the Fibonacci-Heap for example allows to perform an MA-ordering in
O(m+ n log(n)) time.
We finally get the following running times of the MA-ordering algorithm:

O((m+ n log(n))n log(ζ)) ≤ O((m+ n log(n))n log(nU)) on general networks

O(n2 log(n) log(ζ)) ≤ O(n2 log(n) log(nKG)) on reconstruction networks in com-
bination with a presented pre-
processing algorithm

In [12] an interesting scaling version of the above presented algorithm is introduced
which does not need sophisticated data structure like the Fibonacci heap and achieves
the following running times:

O(nm log(U)) on general networks

O(n2 log(KG)) on reconstruction networks in combination with
a presented preprocessing algorithm

3.4.6 Growing-trees algorithm

In September 2004, Yuri Boykov and Vladimir Kolmogorov (two researchers in the do-
main of computer vision) introduced a new algorithm for solving maximum flow problems
and tested it with success on various flow problems appearing in computer vision. Be-
cause of its structure, we will refer to this algorithm as the growing-trees algorithm.
This is an algorithm of the first type and we will only give a brief description, for further
information see [7].

The growing-tree algorithm is similar to the general labelling algorithm but has two
important differences. Whereas the general labelling algorithm uses one search tree
beginning at the source to find augmenting paths, we will use two search trees in the
growing-trees algorithm. One Tsource with root at the source and another one Tsink with

(14)See [9] p.80 for more information on the flow decomposition theorem.
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root at the sink. We will alternately grow the trees in the same manner as in the general
labelling algorithm (we simply have to adapt the labelling rule for the sink tree Tsink).
When the two trees ≪touch≫ each other (i.e. when they contain a common vertex), then
we have found an augmenting path. The second difference between the growing-tree
algorithm and the general labelling algorithm is that in the growing-trees algorithm,
after increasing the flow by the augmenting path found, we will not rebuild the two trees
Tsource and Tsink from scratch on but try to keep as much information as possible. For
information how this is done, we refer to [7].

Thus the growing-trees algorithm repeats iteratively the following three stages:

1. Growth stage: The two trees Tsource and Tsink grow until they touch.

2. Augmentation stage: The flow is increased through the augmenting path
found in the growth stage

.

3. Adoption stage: The trees Tsource and Tsink are restored.

It is easy to see that one execution of the growth or augmentation stage takes O(m)
time on general networks. By studying the implementation of the adoption stage pre-
sented in [7] one can examine that its worst-case complexity per execution is bounded by
O(n3) on general networks and will be achieved in only very particular conditions. On
reconstruction networks the adoption stage has a complexity that is bounded by O(n2).
We therefore get the following complexity bounds for the growing-trees algorithm:

O(n3ζ) ≤ O(n4U) on general networks

O(n2ζ) ≤ O(n3KG) on reconstruction networks

From a theoretical point of view, these are very poor complexities, but practically the
time needed in the adoption phase is usually much better than the theoretical worst-case.
On reconstruction networks the growing-tree algorithm in general clearly outperforms
the general labelling algorithm (which has no adoption phase).

The authors of this algorithm only present a non-scaling version. But in the same spirit
as in the capacity scaling, we can introduce scaling by working with ∆-networks to get
complexity bounds of

O(mn3 log(U)) on general networks

O(n3 log(KG)) on reconstruction networks

3.4.7 Algorithm of Goldberg and Rao

In 1997 Goldberg and Rao introduced a maximum flow algorithm using a new idea.
Like Dinic’s algorithm they iteratively construct blocking flows but for the construction
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of the corresponding layered network they use a different length function. While in
Dinic’s algorithm the length of any arc with positive residual capacity is equal to one,
the algorithm of Goldberg and Rao gives a length of zero to arcs with large residual
capacities and inversely a length of one to arcs with relatively small residual capacities.
Applying this idea, the corresponding layered network contains augmenting paths with
quite high capacities. This algorithm can be seen as a mixture between type 2 and type 3
that tries to profit from both advantages because on the one hand we introduce a binary
length function for finding augmenting paths with high capacities and on the other hand
we still work with blocking flows to increase the distance from the source to the sink.

The exact description of the algorithm is rather complicated as it has to treat several
technical difficulties (as for example cycles of zero length when constructing a layered
network) and we refer to [13] for details. On general networks this algorithm has a
complexity bound of

O(min{n 2
3 ,m

1
2}m log(

n2

m
) log(U))

From a theoretical point of view, this algorithm is the fastest known algorithm on a
large variety of maximum flow problems (in particular on reconstruction networks). On
reconstruction networks we achieve a complexity of

O(n
3
2 log(n) log(U)) (15)

Unfortunately, this algorithm is unlikely to be efficient in practice because it has sub-
stantial overhead (large constant time is needed to perform steps of the algorithm) and
especially because it is very likely that the empirical running time will be near the
theoretical worst-case complexity.

3.5 Preflow-push algorithms

3.5.1 Introduction and generic preflow-push algorithm

Algorithms in the preflow-push family are among the most efficient maximum flow al-
gorithms in practice. Additionally, they are all strongly polynomial. Preflow-push algo-
rithms use a rather different technique than augmenting path algorithms. Flow will be
sent locally along arcs whereas augmenting path algorithms always send flow directly
from the source to the sink. By sending flow along arcs, we will not satisfy the flow con-
servation property at intermediate stages anymore. Therefore preflow-push algorithms
work with so called preflows instead of flows that are defined as follows:

(15)Unfortunately, a preliminary application of a preprocessing algorithm does not allow to improve easily
the complexity bound.
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Definition 3.5.1 (Preflow). A preflow ϕ in a network G = (V,E, k) is a function

ϕ : E −→ R that satisfies

i) Skew symmetry: ϕ(v,w) = −ϕ(w, v) ∀ (v,w) ∈ E

ii) Capacity constraint: ϕ(v,w) ≤ k(v,w) ∀ (v,w) ∈ E

iii) Relaxed flow conservation:
∑

e∈ω−(v)

ϕ(e) ≥ 0 ∀ v ∈ V \ {s}

To simplify notations, we will use the same short-notations for preflows as for flows. Ad-
ditionally, we introduce residual networks with preflows in the same way as with flows.

So the only difference between a preflow and a flow is the relaxation of the flow conser-
vation property. By working with preflows, it is possible that a vertex v ∈ V \ {t} has
more flow entering than exiting. This imbalance is measured by the excess:

Definition 3.5.2 (Excess of a vertex). The excess ex(v) of a vertex v ∈ V is defined as
the flow entering in v minus the flow exiting from v, i.e.

ex(v) = ϕ(V \ {v}, v)

By the relaxed flow conservation property, we have that all vertices except t have positive
excesses. A vertex with strictly positive excess is a vertex from which we can send flow
to a neighbor, such a vertex is called an overflowing vertex.
When sending flow locally on arcs, we have to ensure that on the whole, flow will be sent
closer to the sink. For this reason, we introduce a height function h : V −→ N that will
give estimations of the distances(16) from each vertex to the sink. Formally we define a
height function in the following way:

Definition 3.5.3 (Height function). Let ϕ be a preflow in the network G. So h : V −→ N
is a height function for Gϕ if

i) h(s) = n

ii) h(t) = 0

iii) h(v) ≤ h(w) + 1 ∀ (v,w) ∈ E with kϕ(v,w) > 0

We call h(v) the height of the vertex v.

It is easy to see that by property iii) of a height function we have that for every v ∈
V \ {s}, h(v) is a lower bound of the distance from v to t that we will denote by d(v).
Preflow-push algorithms always send flow downhill, i.e. from higher vertices to lower
ones in the hope to push the excess nearer to the sink. Arcs on which flow can be
pushed are called admissible arcs and are defined as follows:

(16)In this context every arc with strictly positive residual capacity has a length of 1 and all other have a
length of 0.
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Definition 3.5.4 (Admissible arc). An arc (v,w) ∈ E is called admissible if it satisfies

i) h(v) = h(w) + 1

ii) kϕ(v,w) > 0

So having an overflowing vertex v ∈ V and an admissible arc (v,w) ∈ E, we can push
as much excess as possible from v to w. This procedure is called Push(v,w) and is one
of the basic operations of a preflow-push algorithm. Algorithm 3 gives a pseudocode for
Push(v,w).

Algorithm 3 The basic operation Push(v,w) on a residual network Gϕ where ϕ is a
preflow

⊲ Applies when: v is overflowing and (v,w) ∈ E is admissible.
1: procedure Push(v,w)
2: λ = min{ex(v), kϕ(v,w)}
3: ϕ(v,w) = ϕ(v,w) + λ

4: ϕ(w, v) = ϕ(w, v) − λ

5: ex(v) = ex(v) − λ

6: ex(w) = ex(w) + λ

7: end procedure

To ensure that the algorithm will not lose the global picture of the problem, we have to
update regularly the height function h. This can be done in the following situation. If
v ∈ V is an overflowing vertex such that for all neighbor w ∈ V with kϕ(v,w) > 0 we
have h(v) ≤ h(w) so we can increase the height of v to 1+min{h(w) | kϕ(v,w) > 0} (17).
This procedure is called Relabel(v) and is the second basic operation in a preflow-push
algorithm. A pseudocode of it is described in algorithm 4.

Algorithm 4 The basic operation Relabel(v) on a residual network Gϕ where ϕ is a
preflow

⊲ Applies when: v is overflowing and for all neighbors w with kϕ(v,w) > 0 we
have h(v) ≤ h(w).

1: procedure Relabel(v)
2: h(v) = 1 + min{h(w) | kϕ(v,w) > 0}
3: end procedure

It can be proven that when we perform applicable Push and Relabel operations, so h
will always be a height function as defined in 3.5.3. Furthermore we will effectively send
as much flow as possible to the sink and by performing Push and Relabel operations as
long as possible, we finally send the excess, that cannot reach the sink anymore, back to
the source and our preflow therefore transforms into a flow. We refer to [9] and [10] for

(17)This updating technique is also known in the label-correcting algorithm for the determination of shortest
distances. See [9] p.136 ff for more information on this technique.
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the proofs of these properties and for additional details.

This algorithm which does not specify a rule how to choose an applicable operation
(either Push or Relabel) is known as the generic preflow-push algorithm. To complete
the description of this algorithm we have to indicate how we initialize it, i.e. which initial
preflow ϕ and height function h will be used. As initial preflow ϕ we use the preflow
that saturates all arcs outgoing of the source and has a value of 0 on all other arcs, i.e.
for (v,w) ∈ E we have

ϕ(v,w) =





k(v,w) if v = s

−k(w, v) if w = s

0 if v 6= s and w 6= s

For the initial height function h we use the following one:

h(v) =

{
n if v = s

0 if v ∈ V \ {s}

The generic preflow-push algorithm has the following complexities:

O(n2m) on general networks

O(n3) on reconstruction networks

For additional information on the complexity bound on general networks we refer to [9]
and [10].

The different preflow-push algorithms that we will discuss afterwards, work exactly in
the same way as the generic preflow-push algorithm with the only difference that they
specify rules how choosing an applicable operation.

All the specifications that we will discuss apply the following rule. They choose an
overflowing vertex v ∈ V \ {t} and apply as long as possible applicable Push(v,w)
and Relabel(v) operations on v till v has lost all of its excess (18). This procedure for
eliminating all the excess of v is called Discharge(v). Algorithm 5 gives a pseudocode
for it.

Therefore the specifications of the generic preflow-push algorithm that we will discuss
afterwards simply give rules that determine an overflowing vertex that has to be dis-
charged. Before presenting these algorithms we will introduce two heuristics that have
shown to be crucial in making implementations of the preflow-push algorithms perform
well in practice.

(18)It can easily be verified that it is always possible to get rid of all the excess of v in this way.
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Algorithm 5 The operation Discharge(v) on a residual network Gϕ where ϕ is a preflow

⊲ Applies when: v is overflowing
1: procedure Discharge(v)
2: while ex(v) > 0 do
3: if ∃w ∈ V such that Push(v,w) is applicable then
4: Push(v,w)
5: else
6: Relabel(v)
7: end if
8: end while
9: end procedure

Global relabelling and gap heuristic

During the development of the preflow-push algorithms, several heuristics were proposed
to speed up the algorithms in practice (19). Especially two of them, called global rela-
belling and gap heuristic, have shown to be very useful.

They both profit from the following property:

Property 3.5.5. If we have a preflow ϕ in the network G and an s− t cut C = [Vs, Vt]
such that ϕ saturates C then we have the following conclusions:

a) There exists a minimum s− t cut C̃ with C � C̃.

b) It is possible to get a preflow of maximum value only by effectuating Push and Relabel
operations on the vertices in Vt.

So if we recognize that we are, during execution of a preflow-push algorithm, in a sit-
uation as described in property 3.5.5 so we can limit our attention to the vertices in
Vt for finding a minimum s − t cut respectively a maximum preflow. There are still
the questions how to find out being in such a situation and how to transform finally a
maximum preflow into a maximum flow. The global relabelling algorithm and the gap
heuristic give answers to the first question.

The global relabelling algorithm simply calculates the exact distance d(v) from every
vertex v ∈ V \ {s} to t by a breadth-first search from the sink on and actualizes the
height function h as follows:

h(v) =

{
n if v = s

d(v) if v ∈ V \ {s}

Note that if we have a preflow ϕ in G that saturates an s− t cut C = [Vs, Vt], so after a
global relabelling all vertices in Vs have a height that is ≥ n since there is no path from

(19)But they do not improve theoretical worst-case complexities.
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a vertex v ∈ Vs to t consisting of arcs with strictly positive residual capacity. Inversely
the cut [{v ∈ V | h(v) ≥ n}, {v ∈ V | h(v) < n}] is always saturated by the preflow ϕ.

One can easily verify that after applying the global relabelling algorithm the s − t cut
[{v ∈ V | h(v) ≥ n}, {v ∈ V | h(v) < n}] will be the maximal s− t cut that is saturated
by ϕ.

The global relabelling algorithm is additionally very useful because it sets the heights to
the exact distances (except for the vertex s). This will help to send the excesses more
directly to the sink and thus accelerates the preflow-push algorithm. Global relabelling
is something we will effectuate only from time to time to ensure that it will not become
a bottleneck operation. By studying more deeply the preflow-push algorithm one can
see that applying the global relabelling algorithm after each n Relabel operations will
not have an effect on the worst-case complexity.

The gap heuristic looks more locally for situations as described in property 3.5.5. It is
based on the following observation. If at some point in the execution of a preflow-push
algorithm there exists a height k ∈ {1, 2, . . . , n − 1} such that no vertex has height k.
Then the s− t cut C = [Vs, Vt] as defined below is saturated by the preflow ϕ:

Vs = {v ∈ V | h(v) > k}

The justification of this is very direct. By the point iii) of the definition of a height
function 3.5.3 we know that there are no arcs from Vs to Vt with strictly positive resid-
ual capacity. But this is equivalent to say that ϕ saturates C.

When we can find such a height k as explained before so we say that there is a gap at
height k. By using an appropriate data structure it is easy to check if at a certain point
of the algorithm, we have a gap or not (20). Therefore the gap heuristic is less expensive
in computational time than global relabelling but on the other hand we can typically
only eliminate a small number of vertices and even if we have a saturated s − t cut in
the network, in general we will not find it directly by the gap heuristic. This explains
also that these two heuristics can be complementary.

Finally for finding a maximum flow we will have to transform the maximum preflow
into a maximum flow. There are algorithms that do this passage in O(nm) time on
general networks (21). On reconstruction networks this passage can even be done in
O(n) because we can simply send the remaining excesses back to the source by the
arcs Ebackward which all have infinity capacity. But if we are only interested in the mini-
mum s−t cut we can even skip the passage from a maximum preflow to a maximum flow.

We will now give an overview of different specifications of the generic preflow-push
algorithm. More details can be found in [9] or [10].

(20)Checking if we have a gap or not can simply be done after each Relabel operation.
(21)See [9] for more information.

61



3.5.2 FIFO algorithm

The FIFO algorithm simply discharges overflowing vertices in a first-in first-out order,
i.e. during the execution of the algorithm we maintain a list containing all the overflow-
ing vertices. At the beginning, this list contains all the vertices which got excess by the
initial preflow. Then we iteratively discharge the first vertex of this list and remove it
from the list. All vertices that became overflowing through this operation will be added
at the end of the list and so on and so forth.

The FIFO implementation of the generic preflow-push algorithm has a running time of

O(n3) On both general networks and reconstruction networks

The FIFO algorithm is very simple to implement and achieves in general good practical
running times (when implemented with global relabelling and gap heuristic). It has very
similar characteristics as the so called Relabel to front implementation that is explained
in [10].

3.5.3 Highest label algorithm

The highest label algorithm simply discharges always the highest overflowing vertex, i.e.
it discharges an overflowing vertex v that satisfies h(v) ≥ h(w) ∀w ∈ V with ex(w) > 0.
With this rule we first discharge vertices that are relatively far away from the sink. The
advantage of this rule can be seen in the example on figure 3.4.

Figure 3.4: An example that shows the idea behind the highest label selection rule.
Blue arrows indicate the transportation of the excess throught the Discharge
operations.

If we begin by discharging vertices far away from the sink we first discharge v1 then
v2, v3 and finally v4. In this way it is possible to get all the excess in only 4 Discharge
operations to the sink (which is optimal).

The highest label algorithm has the following complexity bounds:

O(n2√m) on general networks

O(n
5
2 ) on reconstruction networks
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This algorithm has not only a very attractive strongly polynomial complexity bound but
is also known to be one of the most efficient maximum flow algorithms in practice.

A typical characteristic of the highest label algorithm is that it works very locally because
the vertices with great heights often are near to each other. This is also the main reason
why the gap heuristic is very efficient in combination with this algorithm. But on the
other hand this is a reason why the global relabelling heuristic is often less efficient with
the highest label algorithm as it is unlikely to find great s − t cuts that are saturated
by the preflow. We will study empirical results of this algorithm (implemented with the
gap heuristic) on reconstruction networks later.

3.5.4 Wave algorithm

The wave algorithm uses a similar idea as the highest label algorithm but tries to favor
the global relabelling heuristic instead of the gap heuristic. It can be seen as a hybrid
version of the highest label and FIFO algorithm. It performs passes over the overflowing
vertices where at each pass all overflowing vertices will be discharged in non-increasing
order of their heights. In other words, at the beginning of a pass the algorithm looks
for the highest overflowing vertex. Lets say that this vertex has a height of k. Then
it discharges all the vertices with height k, afterwards all vertices with height equal to
k − 1 will be discharged and so on till we have discharged all the vertices with height
equal to 1. Then the pass terminates and we begin with the next pass.

The difference between the wave algorithm and the highest label algorithm is the fol-
lowing. While discharging an overflowing vertex with height k, new overflowing vertices
with height > k may be created. The highest label algorithm would then discharge the
highest overflowing vertex which is one of the newly created ones and has a height > k.
The wave algorithm instead will continue to discharge vertices with height k and ignores
during a pass newly created vertices with superior height.
As the wave algorithm always examines all overflowing vertices during a path, it acts
more globally than the highest label algorithm. This favors the global relabelling heuris-
tic. Unfortunately the gap heuristic is less efficient in combination with the wave al-
gorithm because of the following reason. Lets suppose that we would get locally a
saturated s − t cut C = [Vs, Vt] such that the heights of the vertices in Vs are < k (for
a k ∈ {1, 2, . . . , n − 1}) and the heights of the vertices in Vt that are adjacent to the
vertices in Vs are > k. Even in such a case it is unlikely that the height k will be a gap
because the global working style of the wave algorithm makes it very probable that we
have a vertex v ∈ Vt not adjacent to the vertices in Vs that has a height of h(v) = k.
On the other hand it is possible to find rapidly great saturated s− t cuts through global
relabelling. Later will test empirically the performance of the wave algorithm (with dif-
ferent combinations of the heuristics) on reconstruction networks.

The complexity of the wave algorithm is

O(n3) On both general networks and reconstruction networks
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3.6 Performances of the different flow algorithms on
reconstruction networks

In this section we discuss the performance of the previously introduced maximum flow
algorithms on reconstruction networks. In our search for efficient algorithms we begin
by a first short analyze that allows us to figure out algorithms that are unlikely to be
efficient in practice.

In a next step we compare the performances of the remaining algorithms with empirical
tests and discuss situations in which they are particularly strong or weak.

3.6.1 Sorting out algorithms unlikely to be efficient in practice

After having effectuated some tests on the time it takes to find augmenting paths from
scratch on, it was clear that augmenting path algorithms using this technique are un-
likely to be efficient in practice. Among these types of algorithms are namely the gen-
eral labelling algorithm, the Edmonds-Karp algorithm, the MA-ordering algorithm, the
capacity-scaling algorithm as well as the algorithm of Dinic. In the past, numerous tests
in general networks with these types of algorithms where effectuated with the conclusion
that their performance is rather poor in practice compared to other algorithms. In [7]
the algorithm of Dinic was tested on reconstruction networks. These tests enforce the
assumption that the algorithms mentioned above are unlikely to be efficient on recon-
struction networks. The capacity scaling technique does not help a lot because the main
problem is not large capacities (because we simply apply a preprocessing algorithm) but
the construction of augmenting paths.

The algorithm of Goldberg and Rao is currently the algorithm with the best worst-case
complexity for maximum flow problems on reconstruction networks. By analyzing the
algorithm we see that on the one hand it is probable that the practical performance of
this algorithm will be near the worst case complexity bound and on the other hand the
algorithm has extremely large constant factors. Especially the numerous subroutines
and the use of complex data structures (we need for example the dynamic tree data
structure to find blocking flows) slow down the algorithm in practice.

Apart of this, a short empirical analyze of a preflow-push algorithm on reconstruction
networks in [1] shows that the empirical complexity of these types of algorithms can be
clearly inferior to the complexity of the algorithm of Goldberg and Rao. Therefore it is
unlikely that the latter algorithm will be efficient in practice.

For further analyzes and empirical tests we thus concentrate on the following algorithms:

• Preflow-push algorithms

• Growing-tree algorithms
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3.6.2 Empirical tests and analyzes

We have implemented and tested the following algorithms working with the growing-
trees technique:

• GT1 : growing-trees algorithm with first preprocessing algorithm

• GT2 : growing-trees algorithm with the second preprocessing algorithm

• GT2 S : a scaling version of the growing-trees algorithm in combination
with the second preprocessing algorithm

The second preprocessing algorithm is always used with two iterations. Additionally
we have implemented and tested the three previously presented preflow-push algorithms
(FIFO, highest label and wave algorithm) with global relabelling and gap heuristic.
First test results have shown that as expected the global relabelling heuristic is of great
importance for the wave algorithm and the FIFO algorithm but slows down the highest
label-algorithm in all of our experiments. The gap heuristic is crucial for the highest
label algorithm as well as for the FIFO-algorithm. In the wave algorithm the usefulness
of this heuristic was less clear. We therefore give experimental results of the following
preflow-push algorithms that we abbreviate as follows:

• PPW : wave algorithm with global relabelling

• PPW G : wave algorithm with global relabelling and gap heuristic

• PPH G : highest label algorithm with gap heuristic

• PPF G : FIFO algorithm with global relabelling and gap heuristic

We tried to implement the different flow algorithms carefully and to optimize the under-
lying data structures for reconstruction networks (22). We have also paid attention to the
fact that preflow-push implementations are running significantly faster on reconstruction
networks when we favor Push operations on consistency arcs to pushes on smoothness
arcs. And in the highest label algorithm, when different overflowing vertices are on the
currently maximum height, so we try to break ties by choosing overflowing vertices in
the same region as previously discharged vertices to provoke more gaps. More details of
our implementations can be obtained by reading the comments of our source code.

We have tested these algorithms on three problems (that we denote by P1, P2 and
P3) with four different graph smoothness factors (1,3,6 and 10). All the reconstruction
networks have about 5 · 106 vertices. The Hardware we used was a Pentium M 1.6 GHz
with 512 MB of RAM. Table 3.6.2 shows some obtained results.

All of the algorithms presented in the table solve typical reconstruction problems in a
reasonable time. We see that problems become more difficult when using higher smooth-
ness factors. Naturally the preflow-push algorithms are less sensible on the smoothness

(22)For example our wave algorithm often needs only between half and a third of the executional time
compared to an implementation by the author of [1] (Version 1.07).
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Problem KG PPW PPW G PPH G PPF G GT1 GT2 GT2 S

P1

1 42.9 59.5 42.8 80.3 15.5 22.6 22.6
3 47.7 60.2 39.6 91.3 25.3 25.7 29.7
6 50.2 62.9 45.2 100.9 50.7 35.6 39.6
10 51.1 69.1 62.0 107.0 111.9 64.6 56.3

P2

1 22.2 23.7 19.2 34.1 10.0 12.9 12.9
3 18.8 24.2 17.7 41.5 25.0 18.9 20.2
6 22.8 29.0 27.4 47.9 48.8 28.2 27.0
10 23.3 35.0 37.2 55.2 125.1 82.8 54.8

P3

1 37.0 45.5 22.2 62.8 13.2 21.5 21.5
3 38.8 53.6 18.9 77.9 28.9 27.6 31.4
6 45.4 56.5 25.1 94.0 57.5 39.4 43.1
10 47.6 63.6 30.2 92.6 98.4 56.8 56.0

Table 3.2: Empirical results of flow algorithms on three reconstruction problems (P1,P2
and P3) with four different graph smoothness factors (1,3,6 and 10). The
numbers in the columns of the algorithms represent the computational time
in seconds for solving the problem.

factor than the augmenting path algorithms. The PPW G algorithm always needed
more computational time than PPW.

As already assumed in the theoretical part, we see that the gap heuristic does not im-
prove the performance of the wave algorithm on reconstruction networks. The wave
algorithm is even slowed down by the gap heuristic. The reason for this is that we need
more complex data structures when using the gap heuristic because we have to be able
to rapidly detect gaps, whereas the wave algorithm without gap heuristic can be imple-
mented with relatively simple data structures. The wave algorithm is particularly rapid
on reconstruction networks because in such a network we usually have large capacities
on consistency arcs that are far away of the minimum s − t cuts. Thus we can rapidly
push flow near to the minimum s− t cuts by the wave system and we already get a high
probability that the global relabelling algorithm will be able to eliminate a huge part of
the network.

The highest label algorithm also shows very interesting performances on reconstruction
networks and its computational time does not change too drastically when we augment
the smoothness factor. This algorithm provokes extremely often gaps.

The FIFO algorithm is the slowest one of the presented preflow-push algorithms. The
main problem is that the efficiency of neither global relabelling nor gap heuristic is com-
parable to the case of PPW or PPH G. It seems that also on reconstruction networks
the main advantage of the FIFO algorithm is that it is very easy to implement because
we do not need complex data structures.

Growing-trees algorithm show to be extremely fast when using little smoothness factors.
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But when we do not implement techniques for handling large smoothness factors, so the
computational time increases drastically as we can see by the results of GT1. As we can
see in the table, using the second preprocessing algorithm is a possibility to diminish the
computational time for reconstruction problems with large smoothness factors. When
working with little smoothness factors, the additional time needed to perform two it-
erations of the second preprocessing algorithm is not covered by the gain in resolution
time for the remaining problem. The scaling version GT2 S is an attractive option for
limiting the computational time when working with large smoothness factors, and on
the other hand we can still profit from finding a minimum s− t cut relatively rapidly in
the case of small smoothness factors.

3.6.3 Choice of an appropriate algorithm

As reconstruction problems with small smoothness factors are anyway not a big prob-
lem, it seems to be reasonable to choose an algorithm whose computational time does
not explode when increasing the smoothness factors. Therefore the algorithms PPW,
PPH G, GT2 and GT2 S seem to be good choices to handle a large variety of reconstruc-
tion problems. When we only have to solve problems with relatively small smoothness
factors, so GT1 is probably the fastest one.
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4 Disparity reduction

In this chapter we develop methods for handling reconstruction problems where we have
local reduction of the allowed disparities for the surfaces. This allows us in particular
to impose internal and border conditions. Furthermore, theoretical results concerning
this new formulation are given that provide a base for numerous applications. As an
application of disparity reduction we propose an efficient pyramidal approach improving
previous ones.

4.1 Introduction

Until now, a graph disparity mapping fG ∈ FG was a function of the type fG : DG −→
{0, 1, . . . , nc − 2} without further restrictions, i.e. independent of the point q ∈ DG we
choose, fG(q) can be any value in the codomain {0, 1, . . . , nc − 2} (which corresponds
to the disparities). In this chapter we will analyze formulations where we can forbid to
reconstruct on certain disparities, depending on the point q ∈ DG we choose.
Formally we fix for each q ∈ DG a nonempty set RGq ⊂ {0, 1, . . . , nc − 2} of admissible

disparities for the point q. We resume these sets by the function RG defined as follows:

RG : DG −→ P({0, 1, . . . , nc − 2}) \ ∅ (1)

q 7−→ RGq

We call such a function RG a disparity reduction or height reduction. The set of all
admissible graph disparity mappings with respect to RG will be denoted by FG

RG and is
defined as follows:

FG
RG = {fG ∈ FG | fG(q) ∈ RGq ∀ q ∈ DG}

The set of all graph surfaces that correspond to mappings in FG
RG will be denoted by

SG
RG .

The optimization problem that corresponds to the disparity reduction RG can now be
formulated as follows:

argmin
SG

RG∈ SG

RG

(
EG
κG(SGRG)

)

Because the sets RGq are nonempty, we are sure that there exist a solution to this problem.

In numerous applications we do not need the possibility to reduce the disparities on
arbitrary nonempty subsets of {0, 1, . . . , nc − 2}, but only on intervals of this set. Such
a disparity reduction RG satisfies

(1)For any set A, P(A) denotes the set of all subsets of A.
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∀ q ∈ DG ∃ cRG

min(q), c
RG

max(q) ∈ {0, 1, . . . nc − 2} with cR
G

min(q) ≤ cR
G

max(q) such that

RGq = {cRG

min(q), c
RG

min(q) + 1, . . . , cR
G

max(q)}

Therefore the two functions cR
G

min, c
RG

max are both of the type DG −→ {0, 1, . . . , nc − 2}
and represent the lower respectively upper bounds for the allowed disparities. Disparity
reduction on intervals will be a key ingredient for numerous applications we propose
afterwards.

In the next section we will introduce graph formulations for the resolution of problems
with disparity reduction.

4.2 Graph formulations for disparity reduction

The aim of this section is to give minimum s − t cut formulations for the resolution of
reconstruction problems with a disparity restriction RG. For applications introduced
afterwards, we only use disparity reductions on intervals. Therefore we will concentrate
on this case.

A first simple idea to formulate disparity reduction is to modify the capacities of the
original network (without disparity reduction) in the following way. We give an infi-
nite capacity to all consistency arcs that correspond to forbidden disparities. To say if
(a, b, c) ∈ V ′ is a forbidden disparity so the arc ((a, b, c), (a, b, c + 1)) gets a capacity of
∞. The justification of this construction is straight forward. Thanks to the fact that in
the modified network exist s− t cuts of finite values (because the set SG

RG is nonempty
and the s − t cuts corresponding the this graph surfaces have finite values), we know
that a minimum s− t cut cannot contain arcs of infinite capacity. Thus a graph surface
corresponding to a minimum s − t cut must respect the disparity reduction RG. Fur-
thermore the values of the s− t cuts that respect RG have not changed.

This simple idea allows to handle arbitrary disparity reduction. But it suffers from
the fact that we still have to work with the whole graph even when we have a very
restrictive reduction. This problem can be tackled by contracting adjacent vertices that
are linked by arcs of infinite capacity. Contracting a subset of vertices A ∈ V in a
network G = (V,E, k) means that we replace the set A by a single vertex vA and every
edge between a vertex v ∈ V \A and a vertex in A is replaced by an edge (with the same
capacity as before contraction) from v to vA. The algorithm 6 gives a formal description
of this procedure.

One can see that contractions of this type does not change the nature of finite s− t cuts
in the network and it is still easy to pass from a finite s − t cut to the corresponding
valid graph surface. In fact the contraction of vertices linked by arcs of infinite capacity
corresponds to the elimination of the consistency edges and corresponding vertices that
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Algorithm 6 Contraction of a subset of vertices A ∈ V in a network G = (V,E, k)

1: procedure Contract(A)
2: Take the subnetwork of G on the vertices V \ A.
3: Add a vertex vA (This vertex is a representative for the set A).
4: Add for every edge (v,w) in the original network with v ∈ V \ A and w ∈ A a

vertex from v to vA with the same capacity as (v,w). Analogously we add
for every vertex (v,w) in the original network with v ∈ A and w ∈ V \ A an
edge from vA to v with the same capacity as (v,w).

5: end procedure

are forbidden by the disparity reduction RG. Unfortunately this formulation changes
the topology of the graph (we do not have anymore a grid structure) and often does not
eliminate much edges. Therefore fast algorithms that were especially implemented for
grid structures does not apply anymore.

That’s why we introduce now another formulation for disparity reductions on intervals
that keeps the grid structure of the graph and allows to reduce the graph to the region
where the reconstruction respects RG. The idea is to work only with the vertices where
reconstruction is allowed by RG. Formally we reduce the set V ′ to the following set:

{(a, b, c) ∈ V ′ | cRG

min(a, b) ≤ c ≤ cR
G

max(a, b) + 1} (2)

We then connect the source and the sink by vertices of infinite capacities to the new
graph front and graph back to obtain a graph as illustrated in figure 4.1.

Working on such a network for solving the problem with disparity reduction on intervals
is a very intuitive idea and was already used in [11]. Unfortunately the values of some
valid s − t cuts have changed in this formulation as shown by the figure 4.2. Thus the
values of finite s − t cuts in the network are not anymore equal to the energy of their
corresponding cuts and we only can hope to get approximative solutions by working with
minimum s− t cuts on the network.

Therefore we investigated in this problem and developed a method that allows to handle
this inconvenience by changing the capacities of some consistency arcs and eliminating
some arcs in the network illustrated in figure 4.1.

For explaining our formulation we begin by a simple reconstruction network in 2D which
only contains two elements in its graph domain DG. In figure 4.3 we show how we change
the disparities and edges on such a network. As illustrated in figure 4.2, the problem
we have to cover is that in some s − t cuts not all the smoothness arcs are taken into
consideration. Our formulation compensates the values of these missing smoothness arcs
by changing the capacities of some consistency arcs. This formulation can be justified

(2)The ≪+1≫ after cRG

max(a, b) corresponds to the additional slice in the formulation without disparity

reduction and is necessary to get a consistency arc ((a, b, cRG

max(a, b)), (a, b, cRG

max(a, b)+1)) that corresponds

to (a, b, cRG

max(a, b)).

70



by using geometric arguments or arguments of graph theory. We present both type of
reasonings and begin with the geometric one.

Figure 4.1: A representation of the graph for the resolution of a problem with disparity
reduction on intervals.

Figure 4.2: The s− t cut C = [Vs, Vs] has an inferior value in the modified graph (which
is shown in the figure) than in the original graph because C does not contain
the blue arcs in the modified graph. Therefore we do not have anymore
the property that the value of a valid s − t cut equals the energy of the
corresponding graph surface.
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Figure 4.3: A simple problem with reduced disparities in 2D. Arcs whose capacities have
been changed are drawn in red as well as the value by which we have changed
the capacities. The eliminated edges are drawn as dashed blue lines.

When reconstructing on the vertex (1, 0) we are sure that we have a smoothness en-
ergy of at least 3KG because the first disparity on which we can construct on the other
disparity line is (0, 3). This energy corresponded in the original network without dispar-
ity reduction to the three smoothness arcs ((0, 1), (1, 1)), ((0, 2), (1, 2)) and ((0, 3), (1, 3))
that do not exist anymore. This missing energy can be compensated by adding a value
of 3KG to the capacity of ((1, 0), (1, 1)) as shown in figure 4.3. In the same manner we
can justify the other changes.
We can also justify the changes by constructing the final graph in the following way.
In a first step we construct the graph where we give a capacity of ∞ to forbidden
consistency arcs and perform the vertex contraction as we have done in the previously
introduced formulation. We finally obtain the network as illustrated in figure 4.4 a).
Having performed this operations we are still sure that the value of a finite s − t cut
equals the energy of its corresponding surface. We will now step by step apply changes
to the capacities and eliminate edges in the obtained network that do not touch the
value of any s− t cut till we get finally the graph as illustrated in figure 4.3. Note that
we will exclusively eliminate edges with finite values and only change finite capacities to
other finite capacities. Therefore the s− t cuts of infinite values remain always exactly
the same after the changes. So it will suffice to show that the values of finite s− t cuts
will not be modified by our subsequent changes.
The first change we do is to eliminate the edges ((0, 3), (1, 0)),((0, 7), (1, 5)) and their
reversals. This will not affect the value of any finite s − t cut C = [Vs, Vt] because
C has to satisfy (0, 3), (1, 0) ∈ Vs and (1, 5), (0, 7) ∈ Vt and thus the eliminated edges
cannot be in C. Furthermore because (0, 3) ∈ Vs and (1, 5) ∈ Vt we know that the edges
((1, 1), (0, 3)), ((1, 2), (0, 3)), ((1, 3), (0, 3)), ((1, 5), (0, 6)) and ((1, 5), (0, 5)) cannot be in
any finite s− t cut. Therefore we eliminate them too and obtain the network illustrated
in 4.4.
It can be easily seen that the arc ((0, 3), (1, 1)) is in a finite s− t cut C if and only if the
arc ((1, 0), (1, 1)) is in the cut C. The same is valuable for the two arcs ((0, 6), (1, 5))
and ((0, 6), (0, 7)). We can therefore eliminate the arcs ((0, 3), (1, 1)) and ((0, 6), (1, 5))
and add their capacities to ((1, 0), (1, 1)) respectively to ((0, 6), (0, 7)) as shown in figure
4.4 c).
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Figure 4.4: A step by step reasoning of the network modification for problems with
reduced disparities on intervals.
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Finally one can easily verify that the arc ((0, 3), (1, 2)) is in a finite s−t cut C if and only
if one of the arcs ((1, 0), (1, 1)) or ((1, 1), (1, 2)) is in C. We can therefore eliminate the
arc ((0, 3), (1, 2)) and add its capacity KG to ((1, 0), (1, 1)) and ((1, 1), (1, 2)) without
changing the value of any finite s − t cut. We can apply the same changes on the sink
side of the graph as shown in the figures to obtain the network shown in figure 4.4 d).

With an analog reasoning as before we see that the arc ((0, 3), (1, 3)) is in a finite s− t

cut C if and only if one of the arcs ((1, 0)(1, 1)), ((1, 1)(1, 2)), of ((1, 2), (1, 3)) is in C.
We can therefore eliminate the edge ((0, 3), (1, 3)) and add its capacity KG to the other
three edges mentioned above to obtain finally the graph illustrated in figure 4.4 e) which
is the same as the one in figure 4.3.

There is just one special case of disparity reduction on intervals that can appear in the
simple 2D graph on which we work. It is about the situation illustrated in figure 4.5
when the two disparity lines are not connected to each other. In this case we can simply
apply the changes as shown in the figure. Additionally we have to add the constant 3KG

to the value of every finite s − t cut to obtain its value before the modifications. This
value is explained by the fact that we have a smoothness energy of at least 3KG in our
example due to the disparity reduction since there is a gap of three disparities between
the restrictions on the two disparity lines. But for finding the minimum s − t cut (and
therefore the optimal surface) we evidently do not have to consider this constant energy
addition.

Figure 4.5: A special case that can arrive in disparity reduction by intervals.

This method for formulating disparity reductions on intervals on simple 2D graphs with
two elements in the graph domain can be easily extended to arbitrary reconstruction net-
works. We simply have to apply for every two neighboring points in the graph domain
the previously described modifications. Figure 4.6 shows how we apply this formulation
on a more general example in 2D. The 3D case is analogue.

We have implemented the formulation with reduced disparities on intervals. Further
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Figure 4.6: A 2D example of our formulation for disparity reduction on intervals.

information how to solve such problems with our code can be found in chapter about
the code.

In the next section we will discuss an important special case of disparity reduction on
intervals.

4.3 Internal and border conditions

An important special case of the disparity reduction on intervals are internal and border
conditions. We talk about internal conditions when we fix some disparities for the
reconstruction, i.e. for some chosen points q ∈ D ⊂ DG we associate a priori disparities
cq ∈ {0, 1, . . . , nc − 2} and we impose that a graph disparity mapping fG ∈ FG for the
reconstruction has to satisfy fG(q) = cq ∀ q ∈ D.
Internal conditions can easily be formulated as a problem with disparity reduction on
intervals RG by defining the functions cR

G

min and cR
G

max as follows:

cR
G

min(q) =

{
cq if q ∈ D
0 if q ∈ DG \D

cR
G

max(q) =

{
cq if q ∈ D

nc − 2 if q ∈ DG \D
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We will now pass to the border conditions. When solving a reconstruction problem
without disparity reduction, the smoothness effect on the border of the graph domain
is less than in the middle as we do not have a smoothing influence from outside the
graph domain. But when we impose a solution just outside the graph domain, so we can
calculate the smoothing effect that this solution will have on the borders of our graph.
This is what we call border conditions, i.e. we impose a solution for some regions outside
the graph domain and we want to find the optimal solution inside the graph domain
with respect to these border conditions.

An easy method to formulate border conditions is to enlarge the graph domain on
the border regions where we impose conditions and to treat the border conditions as
internal conditions. Therefore border conditions can be seen as a special case of internal
conditions.

Having changed the network in this manner for solving a problem with border condi-
tions, one can see that the added border region will not be connected to the vertices in
the interior region by smoothness arcs anymore. We therefore can again re-eliminate the
added border region before solving the problem. So the only changes we have done to
the original network are changes of the capacities of the vertices at the border. Therefore
it is not necessary to work with a reconstruction graph where we added border points.

In the next section we will discuss some important properties concerning internal and
border conditions.

4.4 Some important properties concerning internal and border

conditions

In this section some theoretical results, concerning internal and border conditions, that
we developed are presented. We have three key properties. The first one simply says
that when we fix internal conditions on the optimal disparities so the formulation of the
problem with these disparity conditions allows to find the global optimal solution. We
will call this property ≪completion property≫ because it allows to complete a part of a
global optimal solution. The second one is about the independence of subproblems sepa-
rated by internal conditions and will be called ≪independence property≫. The third one
deals with the comparison of two solution on the same region but with different border
and internal conditions and will be called ≪monotonicity property≫. These properties
will be of great importance for our further work.

4.4.1 Completion property

Let A ⊂ DG be a subset of the graph domain and let f̃G ∈ FG be an optimal graph
disparity mapping. Furthermore we introduce an internal condition RG on the set A
that imposes that the disparity for any point in A must be on the optimal value, i.e.
∀ a ∈ A we have RG(a) = {f̃G(a)}. So the conclusion of the completion property is the
following: An optimal solution fG ∈ FG

RG for this problem with reduced disparities is an
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optimal solution for the problem without reduction.

The justification is straight forward. The graph disparity mapping f̃G has minimal
energy among all the mappings in FG. By the particular choice of the internal conditions
we have furthermore f̃G ∈ FG

RG ⊂ FG. Therefore f̃G has also minimal energy among
all graph disparity mappings in FG

RG . As the problem with reduced disparities chooses a
graph disparity mapping in FG

RG with minimal energy, we therefore have that the energy

of fG is equal to the energy of f̃G and is therefore a globally optimal solution.

Note that if we only work with nearest optimal solutions so we must have f̃G = fG.

4.4.2 Independence property

The independence property can be stated in the following way. When we solve a problem
with internal conditions such that the graph domain contains two regions without condi-
tions separated by the internal conditions, so we can get the optimal solution by solving
these two regions independently with border conditions imposed by the previously inter-
nal conditions. Figure 4.7 shows such a constellation. Here we suppose to have internal
conditions RG on the set C ⊂ DG. The problem with these internal conditions can now
be solved by solving two independent subproblems. One is the problem on the region
A ⊂ DG where we impose border conditions RG on C (we simply use the previously
internal conditions on C as border conditions). The second problem is the one on the
region B ⊂ DG with border conditions RG on C.

Figure 4.7: Having imposed internal conditions on the region C ⊂ DG we can solve the
non connected subproblems on A ⊂ DG and B ⊂ DG with border conditions
on C.
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The independence property is very intuitive. By regarding the general energy function we
use, as formulated in 1.4, we see that energy is only attributed locally and thus distant
regions do not have a direct influence to each other. A more mathematical way for
justifying the independence property is to observe that when we construct the network
GRG for solving the whole problem with internal conditions RG on C, so we have the
following situation. When we take the subgraph of GRG consisting of all vertices except
the two terminals so this subgraph has two connected components, one that corresponds
to the region A and the other to the region B. Therefore the minimum s− t cut problem
can be solved separately on these two regions.

4.4.3 Monotonicity property

The monotonicity property is about the comparison of two solutions on the same re-
gion but with different border and internal conditions. Suppose that we will solve a
reconstruction problem on a subset of the graph domain A ⊂ DG as illustrated in figure
4.8 where we impose two different conditions (internal and border). Once we impose
conditions on a set B1 ⊂ DG and once on a set B2 ⊂ DG (3). Let RG1 and RG2 be two
disparity reductions on the sets B1 respectively B2 and we suppose that RG1 is higher
than RG2 which is defined as follows:

Definition 4.4.1 (RG1 ≥ RG2 ). The reduction RG1 on B1 is higher than the reduction RG2
on B2 (and we write RG1 ≥ RG2 ) if for every q ∈ B1 ∪B2 we have:

1) If q ∈ B1∩B2 then RG1 and RG2 impose conditions on q whereas the condition imposed
by RG1 is higher (in terms of disparities) than the one imposed by RG2 , i.e.

RG1 (q) = {c1(q)} and RG2 (q) = {c2(q)} with c1(q) ≥ c1(q)

2) If q ∈ B1 \ B2 then RG1 imposes a condition on q where it sets its disparity as high
as possible (i.e. on the disparity nc − 2) and RG2 imposes no condition, i.e.

RG1 (q) = {nc − 2} and RG2 imposes no condition on q

3) If q ∈ B2 \B1 then RG1 imposes no condition on q and RG2 imposes a condition on q

where it sets its disparity as low as possible (to say on 0), i.e.

RG1 imposes no condition on q and RG2 (q) = {0}

When having RG1 ≥ RG2 we also say that the condition RG1 is nearer than RG2 (in terms
of depths).

(3)In our example B1 and B2 only contain points in A and adjacent to A. Conditions outside of this region
have anyway no influence on the problem on A.
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Figure 4.8: Possible constellation for the monotonicity property.

Let f̃G1 ∈ FG
RG

1
be the nearest optimal graph disparity mapping for the reconstruction

problem on A with conditions RG1 on B1 and f̃G2 ∈ FG
RG

2
the nearest optimal graph

disparity mapping for the reconstruction problem on A with conditions RG2 on B2. So
we have the following property that we call monotonicity property :

Property 4.4.2 (Monotonicity property). Under the situation described above we have:

f̃G1 (q) ≥ f̃G2 (q) ∀ q ∈ A (4.1)

I.e. the solution f̃G1 is always nearer (i.e. higher in terms of disparities) than the solution

f̃G2 . In words we can resume the monotonicity property by saying that nearer conditions
give nearer solutions, which is very intuitive. By reasons of symmetry the monotonicity
theorem is also valuable by reversing all inequalities (i.e. ≪ ≤ ≫ becomes ≪ ≥ ≫ and
≪ < ≫ becomes ≪ > ≫).

We will now give a proof of the monotonicity property.

Proof of the monotonicity property

Note that the conclusion of the monotonicity property is trivial when we have A \ (B1 ∪
B2) = ∅. We therefore assume A \ (B1 ∪ B2) 6= ∅. This proof contains two parts. In
a first part of the proof we will show a weakened version of the inequality 4.1, namely
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that we have

∃ q̂ ∈ A \ (B1 ∪B2) with f̃G1 (q̂) ≥ f̃G2 (q̂) (4.2)

We call this property weak monotonicity. In a second part we deduce the monotonicity
property from the weak monotonicity property.

The weak monotonicity property will be proven by contradiction. So we suppose that

∀ q ∈ A \ (B1 ∪B2), f̃
G
1 (q) < f̃G2 (q) (4.3)

In a first step we will show how we can reduce our problem to the case A∩B1 = A∩B2,
i.e. RG1 and RG2 impose internal conditions on exactly the same set. We simply extend
the disparity reduction RG1 to the set A ∩ (B1 ∪B2) by imposing

RG1 (q) = {f̃G1 (q)} ∀ q ∈ (A ∩B2) \B1

By the completion property we know that the problem with the new reduction RG1 on

B1∪ (B2∩A) still gives f̃G1 as nearest optimal solution. By doing the same changes with
RG2 we get into the case A ∩ B1 = A ∩ B2 and still violate the weak monotonicity. We
therefore suppose this case and set B = A ∩B1 = A ∩B2.

To simplify notations we write E(f̃G1 ) for the energy of the first solution with the con-

ditions RG1 (and E(f̃G2 ) represents the energy for the second solution). The first energy
can be divided into the following three parts (this division is also valuable analogously
for the second energy):

1) The energy of the solution on the region A \ B that we will denote by E(fG1
∣∣
A\B

)
(4).

2) The energy of the solution on the region B that we will denote by E(f̃G1
∣∣
B

).

3) The smoothness energy of the solution created between the region A \ B and the
condition RG1 on B1 that we will denote by Es(f̃

G
1

∣∣
A\B

, RG1 ).

With this notations we thus have

E(f̃G1 ) = E(f̃G1
∣∣
A\B

) + E(f̃G1
∣∣
B

) + Es(f̃
G
1

∣∣
A\B

, RG1 )

We will now construct a new (not necessarily optimal) solution of the problem on A with
conditions RG1 by combining the first and the second solution. We use the first solution
for the region B and the second solution for the region A \ B. We denote this solution
by [f̃G1

∣∣
B
, f̃G2

∣∣
A\B

] and its energy with respect to RG1 can be written as follows:

(4) efG
1

˛̨
A\B

stands for the restriction of the domain of the function efG
1 to A \ B. We will use this notation

in an analogue manner in other cases.
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E(f̃G1
∣∣
B

) + E(f̃G2
∣∣
A\B

) + Es(f̃
G
2

∣∣
A\B

, RG1 ) (5)

Because the solution f̃G1 is optimal for the problem with conditions RG1 we have that

the energy E(f̃G1 ) is less or equal than the energy of the combined solution. After
simplification we get:

E(f̃G1
∣∣
A\B

) + Es(f̃
G
1

∣∣
A\B

, RG1 ) ≤ E(f̃G2
∣∣
A\B

) + Es(f̃
G
2

∣∣
A\B

, RG1 ) (4.4)

By interchanging the roles of the first and second solution we get, with the same proce-
dure as before, the following equation:

E(f̃G2
∣∣
A\B

) + Es(f̃
G
2

∣∣
A\B

, RG2 ) ≤ E(f̃G1
∣∣
A\B

) + Es(f̃
G
1

∣∣
A\B

, RG2 ) (4.5)

We will now exploit the hypothesis that 4.2 is false and show that it implies the following
inequality:

Es(f̃
G
1

∣∣
A\B

, RG1 ) + Es(f̃
G
2

∣∣
A\B

, RG2 ) ≥ Es(f̃
G
2

∣∣
A\B

, RG1 ) + Es(f̃
G
1

∣∣
A\B

, RG2 ) (4.6)

We prove this inequality by showing that for every pair of neighboring points r, q with
r ∈ A \ B and q ∈ B1 ∪ B2 we have that the smoothness energy associated to them by
the term on the left side of the inequality is bigger or equal to the smoothness energy
associated to them by the right side of the above inequality. The inequality then follows
by summing up over all such pairs of points r and q. We will treat three cases, namely
q ∈ B1 ∩B2, q ∈ B1 \B2 and q ∈ B2 \B1.

1.case: q ∈ B1 ∩B2

Because RG1 ≥ RG2 we have that RG1 (q) = {c1(q)}, RG2 (q) = {c2(q)} and c1(q) ≥
c2(q). In this case inequality 4.6 formulated on the points r and q transforms to

KG|f̃G1 (r) − c1(q)| +KG|f̃G2 (r) − c2(q)| ≥ KG|f̃G2 (r) − c1(q)| +KG|f̃G1 (r) − c2(q)|

This inequality can be shown rather easily algebraically by using appropriately the
two properties f̃G1 (r) < f̃G2 (r) and c1(q) ≥ c2(q).

2.case: q ∈ B1 \B2

By the definition of RG1 ≥ RG2 we have that RG1 (q) = {nc − 2} and RG2 imposes no
condition on q. Because RG1 and RG2 impose internal conditions on the same set
B, we now that RG1 imposes a border condition on q. Therefore the two neighbors

r and q do not contribute to the energies Es(f̃
G
1

∣∣
A\B

, RG2 ) and Es(f̃
G
2

∣∣
A\B

, RG2 )

because RG2 has no border condition on q. In this case the inequality 4.6 formulated
on the points r and q transforms to

KG|f̃G1 (r) − (nc − 2)| ≥ KG|f̃G2 (r) − (nc − 2)|
(5)The term Es( efG

2

˛̨
A\B

, RG
1 ) represents the smoothness energy between the region A\B and the condition

RG
1 on B1 of the combined solution.
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By using the facts that f̃G1 (r) ≤ nc − 2 and f̃G2 (r) ≤ nc − 2 (because nc − 2 is the

highest disparity) as well as f̃G1 (r) < f̃G2 (r) we see that the previous inequality is
true.

3.case: q ∈ B2 \B1

This case can be handled analogue to the case 2.

By summing over all neighbors r ∈ A \B and q ∈ B1 ∪B2 we have thus proved 4.6.

Furthermore by summing the two inequalities 4.4 and 4.5 and simplifying we get

Es(f̃
G
1

∣∣
A\B

, RG1 ) + Es(f̃
G
2

∣∣
A\B

, RG2 ) ≥ Es(f̃
G
2

∣∣
A\B

, RG1 ) + Es(f̃
G
1

∣∣
A\B

, RG2 ) (4.7)

This is exactly the inverse inequality of 4.6. We thus must have equality in 4.7. Fur-
thermore we must have equalities in 4.4 and 4.5 as a strict inequality in one of these
equations would provoke a strict inequality in 4.7 which is impossible as we just observed
that we must have equality there.

Having equality in 4.4 means that the combined disparity mapping [f̃G1
∣∣
B
, f̃G2

∣∣
A\B

]

(which respects RG1 ) has the same energy with respect to RG1 as f̃G1 and is therefore
an optimal solution. Because we assumed that the weak monotonicity property does
not hold we have that the combined disparity mapping is everywhere as near (i.e. has
higher disparities) as f̃G1 and on at least one point (the point q̂ in 4.3) even nearer. This

contradicts the assumption that f̃G1 is the nearest optimal solution for the problem with
conditions RG1 and finally proofs the weak monotonicity property.

We will now deduce the monotonicity property from the weak monotonicity property.
Again we prove by contradiction and thus suppose that the monotonicity property is
false. Therefore ∃ q̂ ∈ A with f̃G1 (q̂) < fG2 (q̂). Because RG1 is higher than RG2 , we must
have q̂ ∈ A \ (B1 ∪ B2). We now define terms that will allow us to apply the weak
monotonicity property.

We define A′ as the set of all points in A \ (B1 ∪B2) where we violate the monotonicity
property, i.e.

A′ = {q ∈ A \ (B1 ∪B2) | f̃G1 (q) < f̃G2 (q)}

Furthermore we define two reductions R′G
1 and R′G

2 that are extension of RG1 and RG2 to
the sets B1 ∪ (A \ A′) and B2 ∪ (A \ A′), in the following way:

R′G
1 (q) = {f̃G1 (q)} ∀ q ∈ B1 ∪ (A \ A′)

R′G
2 (q) = {f̃G2 (q)} ∀ q ∈ B2 ∪ (A \ A′)

Because we extend the two reductions on points that are not in A′, it is easy to verify
that we still have R′G

1 ≥ R′G
2 . Furthermore by the completion property we know that the

problems with reductions on R′G
1 respectively R′G

2 have f̃G1 and f̃G2 as nearest optimal
solutions. Additionally the set A′ is not empty as q̂ ∈ A′.
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Thus the problems with the solutions f̃G1 and f̃G2 of the problems with the two reductions
R′G

1 respectively R′G
2 violate the weak monotonicity property and give a contradiction.

We will now discuss some applications of the above introduced properties.

4.4.4 Application: Error characterization of subproblems

When having to solve a large reconstruction problem on a graph domain DG it is often
interesting to solve different subproblems on subsets of the graph domain. We define
a subset of graph domain A ⊂ DG for the resolution of the subproblem as shown in
figure 4.9. Furthermore as shown in the figure, the set ∂A contains the points in DG \A
adjacent to points in A. We call these points the outer border of A (6). Let f̃G the
nearest optimal solution of the reconstruction problem over the whole graph domain
and let f̃GA be the nearest optimal solution of the reconstruction problem over A with
arbitrary border conditions on ∂A (it is also allowed to set no border conditions or only
on some points of ∂A). Let A1 ⊂ A be the points where the two solutions coincide and
A2 the set where they do not, i.e.

A1 = {q ∈ A | f̃G(q) = f̃GA (q)}
A2 = {q ∈ A | f̃G(q) 6= f̃GA (q)} = A \A1

As we usually try to determine the optimal solution of the problem over the whole graph
domain, we say that the reconstruction of the subproblem is erroneous on the set A2.
We have the following characterization of the set A2.

Property 4.4.3 (Error characterization of subproblems). For every point of the graph
domain q ∈ A2 that was reconstructed erroneous by the subproblem we have that there
exists a path on the domain grid from q to a point of ∂A that only passes through points
in A2 ∪ ∂A.

This property can be resumed by saying that every error of a subproblem originates
from the outer border of the region over which we solve the problem.

This property is equivalent to say that we cannot have an island of errors A′
2 ⊂ A2 sur-

rounded by points ∂A′
2 = A′

1 ⊂ A1 where we have correctly reconstructed as illustrated
in figure 4.10.

We will justify the error characterization by contradiction. So we suppose having an
island of errors as illustrated in figure 4.10. Let RG be internal conditions who set the
disparities in A′

1 to the disparities found by solving the subproblem (which are the same
on the set A′

1 ⊂ A1 as the disparities found by solving the whole problem). By the com-
pletion property we know that the nearest solution of the subproblem with reduction
RG is the same as without the reduction. In addition, by the independence property
the part on A′

1 of the subproblem with reduction on RG can be solved independently of

(6)In general for any set B ⊂ DG we use ∂B for the outer border of B, i.e. ∂B is the set of all points in
DG \ B adjacent to points in B.
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Figure 4.9: Example for showing the type of errors by solving a subproblem over A ⊂ DG.
The set A1 is the set of all the points where the nearest solution of the
subproblem is the same as the nearest solution of the problem over DG. A2

is the set of all the points where the two solutions differ, i.e. the points where
we have not achieved the global optimal soluton by solving the subproblem.
We have the property that for every point q ∈ A2 we can find a path on the
grid consisting entirely of points in A2 ∪ ∂A that goes from q to a point of
∂A.

the rest. But as RG sets the disparities of A′
1 on the global optimal solution, the com-

pletion property implies that the nearest optimal solution on A′
2 with border conditions

RG must be the same as the global optimal solution. Which is a contradiction as we
supposed that the points in A′

2 were reconstructed erroneously by the subproblem.

One can show that the conclusion of the error characterization property is still valid if
we set

A1 = {q ∈ A | f̃G(q) ≤ f̃GA (q)}
A2 = {q ∈ A | f̃G(q) > f̃GA (q)} = A \ A1

or

A1 = {q ∈ A | f̃G(q) < f̃GA (q)}
A2 = {q ∈ A | f̃G(q) ≥ f̃GA (q)} = A \ A1
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Figure 4.10: Errors as illustrated in this figure are impossible as there is a erroneous
subregion A′

2 surrounded by the set A′
1 which is a subset of A1 and was

therefore reconstructed correctly. We call this impossible constellation an
island of errors.

and also when we change the inequalities above. This can be justified in exactly the
same way but by using the monotonicity property instead of the completion property.

4.4.5 Application: Constructing locally upper and lower bounds for the
nearest optimal solution

We will now present a simple technique for constructing locally upper and lower bounds
for the nearest optimal solution. Let f̃G be the nearest optimal reconstruction solution
on the entire graph domain DG and let A ⊂ DG be a subset of the graph domain on
which we want to construct an upper bound (constructing a lower bound is analog) for
f̃G. Let RG be the following border condition on ∂A:

RG(q) = {nc − 2} ∀ q ∈ ∂A

To say RG is the highest possible border condition on ∂A. Let f̃GA be the solution of

the problem on A with border conditions RG. So f̃GA is an upper bound on the optimal
solution.

This result can be justified in the following way. Let R̃G be the border condition on ∂A
that sets its disparities on the optimal solution, i.e.

R̃G(q) = {f̃G(q)} ∀ q ∈ ∂A
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By the completion property we know that the nearest optimal solution of the subproblem
on A with border conditions R̃G is f̃G

∣∣
A
. As the border condition RG is higher than

R̃G, we thus have by the monotonicity property that f̃GA will be higher than f̃G, i.e.

f̃GA (q) ≥ f̃G(q) ∀ q ∈ A

Therefore f̃GA is effectively an upper bound of f̃G.

We can find in the same way a lower bound on A by setting the border condition RG on
∂A as low as possible (i.e. RG(q) = 0 ∀ q ∈ ∂A). This method is particularly interesting
because we do not have to work on the whole network to get a lower or upper bound of
the nearest optimal solution. Additionally, tests we have performed, showed that bounds
of this type are often very accurate. Figure 4.11 shows a typical example of our tests.
The error images show the accuracy of the upper bound on a subregion of the graph
domain of 100x100 points. On the binary error map we see that on a large zone, the
upper bound is even on the optimal solution.

Figure 4.11: An empirical test for determining the quality of an upper bound. The
red square on the reference image indicates the region (100x100 points) on
which we construct an upper bound with the introduced technique. The
error image shows a representation of the errors done from black (=̂ no error)
to white (=̂ maximal error made of 36 disparities). The reconstruction was
done over 100 disparities, i.e. nc = 101.
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4.5 Application: Pyramidal approach

In this section we will discuss an interesting application of disparity reduction, namely a
pyramidal approach for solving approximately a reconstruction problem. The main idea
of a pyramidal approach is to begin by solving a relatively oversimplified version of the
original problem and to use the solution found there for creating a new problem that
formulates the original problem more accurately and so one and so forth. In this way
we never have to work on the whole graph and are thus capable to solve much bigger
reconstruction problems as with a direct method. We apply the pyramidal idea in the
following way.

We begin by solving the original reconstruction problem with a coarse discretization.
The solution found by solving this problem will be used to determine a region in which
we are trying to improve the solution with a finer discretization. This region will be
chosen as a band that surrounds the previous solution. We then pass to the next iter-
ation where we solve a reconstruction problem restricted on this band but with a finer
discretization. This procedure can be applied iteratively. On the last iteration we solve
a problem on a band in which we have the same discretization as the original problem.
The solution found in this problem is the final solution of the pyramidal algorithm. Fig-
ure 4.12 shows an example of this pyramidal approach.

The article [11] was the first one that developed the pyramidal approach for the recon-
struction problem formulated by minimum s−t cuts. In that paper the above mentioned
pyramidal approach is combined by an iterative adaption of the graph domain to be able
to handle large problems.

Unfortunately, this adaption provokes reconstruction errors. Additionally the pyramidal
algorithms in that paper seem not to apply a correct disparity reduction formulation and
therefore do not handle the problem of missing smoothness arcs as described in figure
4.2. Our pyramidal algorithm does not suffers from these problems. The drawback of
not adapting the graph domain is that we cannot solve problems with very large di-
mensions in a and b. The approach we have chosen to handle this problem is to break
the original problem into several subproblems on different regions of the graph domain,
that can be solved independently (we therefore can solve them simultaneously on several
computers). We will discuss this technique in details in the chapter about parallelization.

We will now discuss some details concerning our implementation of the above proposed
pyramidal algorithm.

4.5.1 Some details on the implementation

An implementation of the above proposed pyramidal algorithm can be found in our code.
We have introduced two parameters λ, n′c that allow to adjust the algorithm.

The parameter n′c fixes the maximum number of disparities per point in the graph domain
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Figure 4.12: An example of the explained pyramidal approach with two iterations. In
a first step we solve the initial problem with a coarse discretization of the
disparities as illustrated in a) (the red points represent the nearest opti-
mal solution found). We then fix a band surrounding the optimal solution
and pass to the next iteration where we solve a problem with the original
discretization of the disparities on this band as illustrated in b). The blue
points represent the nearest optimal solution found in this problem.

that we consider in the reduced problems. Or in other words, the maximum number of
vertices in the intervals for the disparity reduction. In example 4.12, we have n′c = 6.

The second parameter λ allows to determine how the width of the band changes from
one iteration to the next. For example λ = 3 means that the width of the band in the
next iteration is a third of the current width of the band. So λ can be seen as a sort of
≪zooming-factor≫. In the example 4.12, we have λ = 2.

Because the number of disparities per interval is constant on each iteration, namely
n′c, we have also that λ indicates the refinement of the disparity discretization. To say
λ = 2 means that by passing from one iteration to the next one, the distance between
consecutive two vertices on the same disparity line halves.

When implementing our pyramidal algorithm, we paid attention that the vertices in the
intermediate networks are always a subset of the vertices in the original network. This
has the advantage that every intermediate solution of the algorithm can be used as an
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approximate solution of the original problem. On the other hand this restriction implies
that the parameter λ has to be a natural number ≥ 2, i.e. λ ∈ N \ {1}.

We have chosen these two parameters for the adjustment of our pyramidal algorithm
because of the following reasons. The parameter n′c forces that in all iterations we
never have more that na · nb · n′c vertices. This allows to handle memory problems
because we can fix n′c on a value such that we are sure that we can handle a graph of
na ·nb ·n′c vertices with the available virtual memory, and we are sure that we can apply
our pyramidal algorithm without memory problems. On the same time, thanks to the
parameter n′c we ensure that all the problems appearing during the pyramidal algorithm
have approximately the same size.

The parameter λ allows to determine which reconstruction errors done in one iteration
can still be corrected on the subsequent iterations. To say if λ = 2, so reconstructed
points must have a distance to the optimal solution of more then half of the actual
band width to provoke nonreversible errors in the subsequent iteration, because the next
bands do not contain anymore the optimal solution. When having a problem where
reconstruction is rather easy so we can choose a big λ. In the case of very sensible
problems, a small λ is adequate.

In our code we use the variable max_c_resolution for the parameter n′c (respectively
max_z_resolution in the .ini-file) and stretchfactor for the parameter λ.

The presented pyramidal approach is also very useful to limit the number of consis-
tency capacities that have to be calculated. Limiting these calculations may be crucial
as many interesting energy functions use very time expensive methods for calculating
consistency capacities. Sometimes preliminary optimization problems have to be solved
for determining the consistency capacities. To be able to calculate the number of con-
sistency capacities that have to be calculated in our pyramidal approach, we first have
to evaluate the number of iterations N done by the pyramidal algorithm in function of
the two parameters n′c and λ.

For determining the number of iterations N of the pyramidal algorithm, we will observe
the iterations in inverse order and determine at each step, how many disparities per
disparity line of the original graph are covered by the current band. The iteration 1 will
then be the first one for which the band covers all the nc − 1 disparities per disparity
line.

At the last iteration (i.e. iteration number N) the disparity discretization of the current
problem and the original problem are the same. Additionally, as we observe n′c − 1
disparities per disparity line in this iteration, we also observe n′c− 1 points per disparity
line of the original graph. In the previous iteration (iteration N − 1) the band was by a
factor of λ bigger. We therefore observed λ(n′c−1) points per disparity line of the original
graph. By repeating this argument we will cover at the first iteration λ(N−1)(n′c − 1)
disparities per disparity line of the original graph. As the first iteration has to cover all
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the disparities of the original graph, we must have

λ(N−1)(n′c − 1) ≥ nc − 1 (4.8)

So as explained above, N is the first natural number satisfying 4.8. Therefore N can be
written in the following way:

N =

⌈
log(nc − 1) − log(n′c − 1)

log(λ)

⌉
+ 1 (7) (4.9)

We can now calculate the number of consistency capacities that have to be calculated
during the pyramidal algorithm (where we suppose that at each iteration we calculate
all the necessary capacities from scratch on).
At each iteration of the pyramidal algorithm we have nanbn

′
c vertices in the network. We

therefore have to calculate nanb(n
′
c − 1) consistency capacities per iteration. So during

the whole pyramidal algorithm we calculate nanb(n
′
c − 1)N capacities. When solving

the original problem directly we have to calculate nanb(nc − 1) consistency capacities.
Therefore the ratio between the calculations in the original network and the ones in the
pyramidal approach is:

(nc − 1) : ((n′c − 1)N) =

(nc − 1) :

(
(n′c − 1)(

⌈
log(nc − 1) − log(n′c − 1)

log(λ)

⌉
+ 1)

)
(4.10)

We will now illustrate with a practical example how one can profit from the pyramidal
approach for calculating less consistency capacities. Suppose we want to solve a problem
with 200 disparity steps, i.e. nc = 201. We fix the two parameters on n′c = 51 and λ = 4
(8). By equation 4.9, the pyramidal algorithm takes two iterations, i.e. N = 2. Equation
4.10 allows to determine the ratio between the consistency calculations by the direct
approach and the pyramidal approach which is

200 : 100

To say, we will calculate exactly the half of consistency capacities with the pyramidal
approach. Note that this ratio may be even considerably bigger when working with a
greater nc and λ.

Note also that the computational time for solving the flow problems that appear in a
pyramidal approach is usually inferior to the computational time for solving the original
flow problem directly, thanks to the relatively little size of the flow problems in the
pyramidal algorithm. Using a pyramidal approach, we thus reduce the complexity of the
problem.

(7)For any real number x ∈ R we write ⌈x⌉ for rounding up the value of x to the next number in Z.
(8)This is a very reasonable choice. We have solved some problems with exactly these parameters and

usually got results with no significant reconstruction errors.
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5 Parallelization

In this chapter we introduce algorithms that can be parallelized for solving large scale
problems that are intractable with the classical minimum s − t cut formulation. We
will typically divide the problem into different subproblems, that can be solved indepen-
dently, and thus simultaneously on different computers. Having solved the subproblems,
we will merge them together to get a solution of the original problem. Most of the
proposed methods are algorithms that find accurate approximations of the optimal so-
lution and have even good chances to find the global optimal solution. In particular, we
propose methods that allow to give an upper bound of the error made. Additionally, we
propose an exact parallelizable algorithm for finding the global optimal solution.

5.1 Introduction

One of the major drawbacks of the minimum s − t cut formulation we use for solving
the stereo problem, is that we rapidly get huge reconstruction networks. For example
when we want to calculate a disparity map for an image of size 2048 × 1536 (almost
all common digital cameras have at least such a resolution) with a disparity range of
nc = 300 we get a reconstruction network with about one billion vertices. When we
want to solve such large scale problems, the following principal problems appear:

• Memory problems

• Very high computational time for solving the flow problem

• Very high computational time for calculating the consistency capacities

The pyramidal approach is one method for handling these problems, but unfortunately
it is not entirely satisfactory for very big instances as we have to choose a very little n′c
to handle such problems, what provokes significant errors. Also the computational time
is still very high by solving huge problems with the pyramidal approach.

That is why we introduce in this chapter algorithms that solve approximately big prob-
lems by combining the pyramidal approach with the idea of parallelization. We will cut
the original problem into different subproblems that we can solve independently. This
technique allows us to handle the three mentioned problems above.

To simplify the explanations we will begin with the case where we divide the original
problem into two subproblems. This will be done by defining two overlapping regions
A,B ⊂ DG that cover the graph domain as illustrated in figure 5.1. We will then solve
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the two subproblems over A and B. We denote by f̃GA the nearest optimal solution on

the region A and by f̃GB the nearest optimal solution over the region B. Finally we will

merge the solution in the following way. On the part A \ B we will use f̃GA , and on

part B \ A we will use f̃GB . Now we have to specify how we construct the missing part
of the solution on the middle region A ∩ B. This can be done in various ways. We
will propose and analyze different methods for merging the middle region later. This
method allows to diminish the a and b dimensions of the subproblems. For handling the
c dimension we can use the proposed pyramidal approach when solving the subproblems.

Figure 5.1: We define two subproblem on the graph domain, one over A and one over
B. We will then construct a global solution by taking on the set A \ B the
solution found by solving the problem over A and analogously we use the
solution found by solving the problem over B for the part B \A. We discuss
later how we complete this solution on the middle region A ∩B.

This idea of parallelization is motivated by the following observation. When solving the
subproblem over the region A (the same discussion is valuable for the region B) so we
know by the error characterization property that all the errors we do in the reconstruc-
tion must originate from the outer border ∂A. But in practice the influence of this border
is only limited. This comes from the fact that a local region of the object we reconstruct
does not contain much information about another remote region. Therefore the errors
provoked by ∂A normally do not have a big influence on the region A\B, and often they
even do not reach this region (in such a case we even found the optimal solution on A\B).
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The next section gives empirical results allowing to quantify the reconstruction errors
on the set A and therefore allowing to determine a reasonable width of the overlapping
region to limit the errors made on A \B and B \ A.

5.2 Error analysis for determining the sets A and B

For analyzing errors in subproblems we first solve a subproblem on a region A ⊂ DG

as illustrated in figure 5.1 (we denote the nearest solution of this problem by f̃GA ). We

then compare this solution to the nearest global optimal solution f̃G. The error will be
measured in difference of disparities on the graph, i.e. the error made on a point q ∈ A

is |f̃GA (q) − f̃G(q)|.
We made tests on several frameworks for analyzing these errors. They were all very
similar. We therefore discuss in this section examples with a typical framework. Figure
5.2 a) shows the reference image, with a resolution of 271 x 181, of a face that we will
reconstruct and b) is a representation of the nearest optimal solution when solving the
problem directly on hundred disparity steps (i.e. nc = 101).

Figure 5.2: a) Reference image of our example. b) Disparity map obtained by solving
the whole problem directly.

We will now discuss the results when reconstructing only the first k columns of the graph
domain for k ∈ {150, 125, 100, 75, 50}. Figure 5.3 shows in the first line the reconstruc-
tion results as disparity maps. Already here, we see that the errors made on the right
border are very limited. On the second line we give a binary error map where each graph
point with a difference to the global optimal solution is drawn in white. As predicted by
the error characterization property, all errors originate from the right border. Further-
more the influence of the error is fairly locally. The third and forth line of figure 5.3 give
a quantification of the errors made. The third line shows in grayscales the amplitude of
the errors, where black corresponds to no error and white to the maximum error made
which is indicated in the fourth line.
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Figure 5.3: A testserie for errors on subproblems.
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All the five illustrated subproblems can be seen as possible choices for the left subproblem
for our parallelization idea (i.e. this corresponds to the problem over region A in figure
5.1). We will concentrate on the question how large to choose the overlapping region
between the sets A and B as shown in figure 5.1 to limit the errors made in A \ B
(respectively B \ A).

Therefore we analyze the errors left when cutting some columns on the right side of
our subproblems in figure 5.3. The region left after cutting some columns would corre-
spond to A \ B. Therefore the number of columns cut corresponds to the width of the
overlapping region A ∩B.

One method to observe the quality of the remaining region after cutting is the maximum
error in this region. Figure 5.4 shows a diagram where we have plotted the remaining
maximum error of the different subproblems in function of the columns we cut on the
right side. We see that already by cutting 8 columns, we have in none of the five
subproblems errors superior to 5 disparity values (which corresponds to an error of 5%
as we work with 100 disparities). By comparing the disparity maps of the subproblems
with the original disparity map, one can see that errors of this amplitude do not create
large, disturbing discontinuities. Furthermore these remaining errors are typically on
very local regions. It is also interesting to note that only one problem has errors that
are more than 20 points away from the right border.

Figure 5.4: Diagram representing the maximal reconstruction errors we still have when
cutting columns on the right side.

Another method for discussing the remaining error when cutting on the right side, is
to analyze the nature of the sum of the remaining errors. Figure 5.5 shows a diagram
where this values are represented. This diagram shows that errors decrease in general
very fast when cutting columns on the right side. In such a diagram the nature of the
curves (how they decrease) seems to be more interesting than the effective values, as
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these values depend on parameters like the image size and the disparity resolution.

Resuming, in most cases cutting between 10 and 20 columns yields already very good
results in practice. Going under 10 columns may be dangerous and can result in signifi-
cant discontinuities depending on the particular case. Therefore the overlapping region
in our parallelization approach should contain in general at least 10 columns. Evidently,
reconstruction errors typically occur in regions that are difficult to reconstruct. To di-
minish the damage when cutting at such a region we think that an overlapping width
of 20 columns would be adequate. Note that we determined the overlapping width in
function of the reconstruction quality on the sets A \B and B \ A. Depending on how
we complete the solution in the middle region A ∩ B it may be necessary to adapt this
width. Techniques for completion on A ∩ B as well as their dependence on the over-
lapping width will be discussed afterwards. Before passing to this topic we will shortly
discuss in the next subsection a method for diminishing the overlapping width.

Finally, note that we have to calculate more consistency capacities in our parallel ap-
proach as there exist overlapping regions. This can be easily compensated by using our
pyramidal approach for solving the subproblems over A and B. In this way, even less
consistency capacities have to be calculated in the parallel approach as by solving the
problem with the classical s− t cut formulation directly.

Figure 5.5: Diagram representing the sum of the remaining disparity errors we still have
when cutting columns on the right side.

5.2.1 Diminishing the overlapping width through intelligent image-cutting

The risk of obtaining large reconstruction errors in a subproblem depends directly on
the region where we have cut the image to get the subproblem. Therefore it may be
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interesting to cut the image in a region that is easy to reconstruct, instead of blindly
cutting on a vertical line. This would allow us to diminish the overlapping width. Regions
that are comfortable to reconstruct satisfy typically the following characteristics:

• very textured

• almost no light reflections

• visible from almost all cameras

The first two properties can be determined by image processing techniques. The last
one is more difficult to exploit. An interesting idea is to study the capacities of some
consistency arcs over the region to analyze, that are well distributed over the disparity
range. If some of these consistency arcs have relatively little capacities, so it is probable
that the correspondent region is rather easy to reconstruct.
Having once determined a measure of reconstruction difficulty for the graph domain, we
can try to cut the graph domain in two parts such that the cut passes through regions
with good reconstruction measure. Here formulations using shortest paths could be very
interesting.

5.3 Some completion methods

In this section we discuss different possibilities to complete the solution on the region
A ∩B. The quality of a completion method can be measured by the following factors:

1. Little energy value of the merged solution

2. No large discontinuities created

3. Even with a little width of the overlapping region we obtain good results

4. Speed of the completion method

The first point is a measure of global quality of the solution, whereas the second point
measures the local quality of reconstruction. Point three and four are important to limit
the computational time. Especially when working with complex consistency capacities,
it may be of importance to limit the width of the overlapping region.

We will discuss the following five methods for completion on A ∩B:

a) Simple completion through straight division of the region A ∩B

b) Completion by solution merging

c) Completion through merging path

d) Energy-optimal completion

e) Variation of the energy-optimal completion
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Simple completion through straight division of the region A ∩B

One of the most simplest methods for completion is to divide the region A∩B vertically
into two regions as illustrated in figure 5.6. On the left side of the division line we use
the solution f̃GA and on the right side f̃GB .

This method has the advantage that it is extremely simple and fast. Unfortunately, we
risk to get large discontinuities at the line where we merged. To cover this problem, we
typically have to double the width of the overlapping region. Finally, we often cannot
profit from the speed of the algorithm as the broadening of the overlapping region implies
more calculations for solving the two subproblems over A and B, especially when the
used energies are complex. Nevertheless, when using relatively simple energy functions,
this method can be interesting in practice.

Figure 5.6: One of the most simplest ways to complete the solution in A∩B is to divide
the region A ∩ B with a vertical line. On the left side we use the solution
found in A and on the right side the solution found solution B.

Completion by solution merging

Another simple method for completion is to merge the two solutions on the overlapping
region. As we know that the errors of the solutions f̃GA respectively f̃GB originate from

its right respectively left border it is natural to give more weight to the solution f̃GA on

the left side of A∩B and to favor solution f̃GB near the right side of A∩B. For example
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we can construct a solution on A ∩B by a linear merging of f̃GA and f̃GB . Formally, if N
is the number of columns of the overlapping region, so on column number k of A∩B we
use the solution [

1

N + 1
((N + 1 − k)f̃GA + kf̃GB )

]
(1)

This method is very fast and yields very smooth surfaces. Thus we do not need to
broaden drastically the width of the overlapping region as in the previous method to
avoid discontinuities. On the other hand almost all reconstruction errors we made in
f̃GA and f̃GB have a negative influence on the merged solution. Therefore even without
having large discontinuities, the energy value of the merged solution may be rather high.
This problem is amplified by the fact that the method constructs a solution on the
overlapping region without consulting the corresponding consistency arcs. Anyhow the
presented merging method is an interesting technique to get smooth solutions without
a large overlapping width.

Completion through merging path

An interesting idea for completion is to find an adequate path ρ as illustrated in figure
5.7 instead of a simple straight line as in the previous method. We denote by Aρ the
part of the graph domain on the left side of the path and by Bρ the part on the right

side. Having found a path ρ we will then merge the solution by using f̃GA on the region

Aρ and f̃GB on the region Bρ.

An intuitive criterion for the merging path would be to choose a path that minimizes
the smoothness energy we will get between the two regions Aρ and Bρ. More formally
such a path ρ satisfies:

ρ = argmin
r merging path

Es(f̃
G
A

∣∣
Ar
, f̃GB

∣∣
Br

) (5.1)

This path can be determined in the following way. We construct a dual-like graph on
the set A∩B as illustrated in figure 5.8. A merging path corresponds to a path from α∗

to β∗ on the green graph (that we call merging graph). To every edge e∗ of the merging
graph we associate the edge e = (q1, q2) of the grid over the graph domain such that e
crosses e∗ and (e, e∗) is right-handed. We use the notation e∗ = (q1, q2)

∗.

We then introduce the following length function l∗ on the merging graph. Let e∗ be an
edge in the merging graph and e = (q1, q2) its corresponding edge on the graph domain,
so we set

l∗(e∗) = KG|f̃GA (q1) − f̃GB (q2)|

This length corresponds to the smoothness energy that will be created between q1 and
q2 when the merging path uses edge e∗. It is thus easy to see that the shortest path from

(1)For a real number x ∈ R, [x] denotes the neares integer value to x (we normally break ties by rounding
up).
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Figure 5.7: We try to find an adequate path ρ for merging the solution on the overlapping
region.

α∗ to β∗ with respect to l∗ satisfies 5.1.

This merging method is quite fast and gives solutions with rather good quality concerning
local discontinuities and energy value. Additionally, even with a relatively small width
of the overlapping region, we get good results. Therefore, this method is very efficient
in practice even with complicated energies.

Energy-optimal completion

The optimal completion in terms of energy can be obtained by solving a reconstruction
problem on the set A∩B, where we impose border conditions on the left and right outer
border who are set on the disparities given by the solutions f̃GA and f̃GB . Formally we
define a condition RG on the set ∂A ∪ ∂B as follows:

RG(q) =

{
{f̃GB (q)} if q ∈ ∂A

{f̃GA (q)} if q ∈ ∂B

We then solve the reconstruction problem over the region A∩B with border conditions
RG to obtain a solution f̃GA∩B. By construction, we have that this solution is the best
completion in terms of energy.
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Figure 5.8: A merging path corresponds to a path from α∗ to β∗ in the dual-like graph
in green that we call merging graph. By introducing an adequate length
function in the merging graph we can choose a shortest path from α∗ to β∗

as the merging path.

This method has some interesting characteristics. The reconstructed surface is very
smooth and has an excellent energy value. Furthermore we can use a very little width
of the overlapping region (for example 10 to 20 points). On the other hand, this way of
completion is rather time expensive as we have to solve another reconstruction problem
over the whole disparity range.

Variation of the energy-optimal completion

We can speed up the energy-optimal completion technique by imposing disparity reduc-
tions (on intervals) on the reconstruction problem over A ∩B in the following way. For
a point q ∈ A ∩ B we only allow disparities between f̃GA and f̃GB . As this two solutions
are normally near to each other, we can reduce the resolution time drastically. The
drawback is that in general we will not find the energy-optimal completion anymore. On
the other hand, the obtained solution is still better in terms of energy than any of the
previously proposed methods except the energy-optimal completion. Additionally, the
solution we get through this method will not show large discontinuities in general and
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even with a small overlapping width, we will get good results. Therefore we think that
this method is probably one of the most interesting in practice when the determination
of the consistency capacities is time consuming.

5.4 Completion method allowing to give an error bound on the

energy

In this section we present a completion method that allows to give an upper bound
on the difference in energy between the global optimal solution and merged solutions.
This method uses the merging path technique as introduced before with the following
differences. We construct an upper bound f̃GA on the region A and a lower bound f̃GB on
the region B with the border condition technique introduced in 4.4.5, instead of solving
these subproblems without border conditions. And we use another length function l∗′

on the merging graph defined as follows. Let e∗ be an edge in the merging graph and
e = (q1, q2) the corresponding edge in the graph domain. We then set

l∗′(e∗) = KG|f̃GA (q1) − f̃GB (q1)|
So l∗′ is just a little modification of the length function l∗. The motivation of this energy
function l∗′ lies in the following theorem.

Theorem 5.4.1. When merging on a merging path ρ, so the difference between the
energy of the merged solution and the energy of the global optimal solution is at most

2l∗′(ρ)

where l∗′(ρ) is the length of the path ρ with respect to l∗′.

Proof. Let f̃G be the nearest global optimal solution and [f̃GA
∣∣
Aρ
, f̃GB

∣∣
Bρ

] the merged

solution found by the above merging method. We define the following two conditions
RGA on ∂Aρ and RGB on ∂Bρ:

RGA(q) = {f̃GA (q)} ∀ q ∈ ∂Aρ

RGB(q) = {f̃GB (q)} ∀ q ∈ ∂Bρ
We begin by showing the following lemma:

Lemma 5.4.2.

1. Es(f̃
G
∣∣
Aρ
, RGA) −Es(f̃

G
A

∣∣
Aρ
, RGA) ≤ KG

∑

(q1,q2)∗∈ρ

(
f̃GA (q1) − f̃G(q1)

)

2. Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

) −Es(f̃
G
B

∣∣
Bρ
, RGB) ≤ l∗′(ρ)

3. Es(f̃
G
∣∣
Bρ
, RGB) ≤ Es(f̃

G
∣∣
Bρ
, f̃G

∣∣
Aρ

) +KG
∑

(q1,q2)∗∈ρ

(
f̃G(q1) − f̃GB (q1)

)
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Proof of lemma 5.4.2
All the three points of this lemma use the property that f̃GA is an upper bound and f̃GB
a lower bound of the nearest global optimal solution f̃G on the regions where they are
defined.

The first point can be justified in the following way. Let e = (q1, q2) be an edge from Aρ
to Bρ. So the difference between the contribution of this edge to the smoothness energy

Es(f̃
G
∣∣
Aρ
, RGA) and the contribution of e to Es(f̃

G
A

∣∣
Aρ
, RGA) can be at most KG|f̃GA (q1)−

f̃G(q1)| = KG(f̃GA (q1)− f̃G(q1))
(2). By summing over all such edges e, we get the desired

result. Note that the characterization of the condition RGA is of no importance for this
point.

The second point uses the same argument as the first one. This time, the two terms differ
on the region ∂B. Once we have RGB and once f̃GA . As before fix an edge e = (q1, q2) from

Aρ to Bρ. The difference between the contribution of e to the term Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

)

and to the term Es(f̃
G
B

∣∣
Bρ
, RGB) is bounded by KG(f̃GA (q1)− f̃GB (q1)). By summing over

all edges e from Aρ to Bρ and identifying the right side as l∗′(ρ) we get the desired result.

For proving the third point we also choose an edge e = (q1, q2) from Aρ to Bρ. The

contribution of this edge to the energy term Es(f̃
G
∣∣
Bρ
, RGB) is KG|f̃GB (q2) − f̃G(q1)|.

Through a little transformation using the triangle inequality we get

KG|f̃G(q2) − f̃GB (q1)| = KG|f̃G(q2) − f̃G(q1) + f̃G(q1) − f̃GB (q1)|
≤ KG|f̃G(q2) − f̃G(q1)| +KG|f̃G(q1) − f̃GB (q1)|

Finally by summing over all edges e from Aρ to Bρ we get the desired result.

(Lemma 5.4.2)

We will now develop some relations concerning energy terms related with f̃G, f̃GA and

f̃GB .

By the completion theorem we know that f̃GA
∣∣
Aρ

is the nearest optimal solution on the

region Aρ with border conditions RGA. As f̃G
∣∣
Aρ

is another solution for the same problem

we must have that its energy cannot be better than the one of the solution f̃GA
∣∣
Aρ

for

this problem, i.e.

E(f̃GA
∣∣
Aρ

) + Es(f̃
G
A

∣∣
Aρ
, RGA) ≤ E(f̃G

∣∣
Aρ

) + Es(f̃
G
∣∣
Aρ
, RGA)

This equation can be transformed to

E(f̃GA
∣∣
Aρ

) ≤ E(f̃G
∣∣
Aρ

) + Es(f̃
G
∣∣
Aρ
, RGA) − Es(f̃

G
A

∣∣
Aρ
, RGA)

(2)Because efG
A is an upper bound for the nearest optimal solution, we know that the right side of the

equality is positive.
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and by applying point 1 of lemma 5.4.2 we get

E(f̃GA
∣∣
Aρ

) ≤ E(f̃G
∣∣
Aρ

) +KG
∑

(q1,q2)∗∈ρ

(
f̃GA (q1) − f̃G(q1)

)
(5.2)

Analogously as before, we know by the completion theorem that f̃GB
∣∣
Bρ

is the optimal

nearest solution on the region Bρ with border conditions RGB . As before we compare this

solution to f̃G
∣∣
Bρ

to get

E(f̃GB
∣∣
Bρ

) ≤ E(f̃G
∣∣
Bρ

) + Es(f̃
G
∣∣
Bρ
, RGB) −Es(f̃

G
B

∣∣
Bρ
, RGB)

We now add Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

) to both sides of the previous inequality to obtain

E(f̃GB
∣∣
Bρ

) + Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

) ≤

E(f̃G
∣∣
Bρ

) + Es(f̃
G
∣∣
Bρ
, RGB)

︸ ︷︷ ︸
I

+ Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

) − Es(f̃
G
B

∣∣
Bρ
, RGB)

︸ ︷︷ ︸
II

We can now apply point 2 of lemma 5.4.2 to the term II and point 3 of lemma 5.4.2 to
I to obtain

E(f̃GB
∣∣
Bρ

) + Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

) ≤

E(f̃G
∣∣
Bρ

) + Es(f̃
G
∣∣
Bρ
, f̃G

∣∣
Aρ

) +KG
∑

(q1,q2)∗∈ρ

(
f̃G(q1) − f̃GB (q1)

)
+ l∗′(ρ) (5.3)

Finally by summing the inequalities 5.2 and 5.3 we get

E(f̃GA
∣∣
Aρ

) + E(f̃GB
∣∣
Bρ

) + Es(f̃
G
B

∣∣
Bρ
, f̃GA

∣∣
Aρ

)
︸ ︷︷ ︸

=E[ efG
A

∣∣
Aρ
, efG

B

∣∣
Bρ

]

≤

E(f̃G
∣∣
Aρ

) + E(f̃G
∣∣
Bρ

) + Es(f̃
G
∣∣
Bρ
, f̃G

∣∣
Aρ

)
︸ ︷︷ ︸

=E( efG)

+KG
∑

(q1,q2)∗∈ρ

(
f̃GA (q1) − f̃GB (q1)

)

︸ ︷︷ ︸
=l∗′(ρ)

+ l∗′(ρ)

Be replacing the indicated terms we finally get

E[f̃GA
∣∣
Aρ
, f̃GB

∣∣
Bρ

] ≤ E(f̃G) + 2l∗′(ρ)

what finishes the proof.
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Therefore we try to merge on the shortest path (with respect to l∗′) since this gives
us the best error bound. When the length of the shortest merging path is zero, so we
are sure that we have achieved the global optimum. When choosing a relatively wide
overlapping region, this case appears often.
This method has very similar characteristics as the first merging path method. An
interesting application is to use this method for bounding the error of the energy-optimal
completion or its variation in the following way. We calculate an upper bound solution
on A and a lower bound solution on B as before. We then merge the two solutions by the
energy-optimal completion or its variation. Both of these methods achieve solutions with
a better energy than the merging path method introduced in this section. Therefore, the
error bound of the merging path method is also valid for the energy-optimal completions.

5.5 Generalization of the division into two subproblems

An important question is how to generalize the above suggestions to get more than two
subproblems. One idea is to use the above procedures recursively, i.e. for the resolution
of both subproblems on A and B we use again one of the proposed methods. This
recursive call can be continued as long as desired (typically till the subproblems are
little enough to be solved directly, respectively till we have a number of subproblems in
the same range as the number of computers that we use for the resolution).
Unfortunately the error bound of the previously introduced method will not be valuable
anymore when using recursive calls as it is impossible to bound the error propagation
efficiently (nasty examples are easy to find). To cover this problem we can divide the
graph domain at the beginning. Figure 5.9 shows a grid division of the graph domain
in four overlapping regions. We construct alternately upper and lower bound solutions
on the different regions i.e. we construct upper bound solutions on A and D and lower
bound solutions on B and C. For merging we have to find a merging structure as il-
lustrated in the figure. Here the search for the best merging structure is more difficult.
Nevertheless, the result of the error bounding can easily be generalized on the grid and
as before the error bound is valuable even if we do not find the best merging structure.

Note that the idea of preliminary division of the graph domain can also be of interest
for other proposed methods because it has the following advantages:

• Size and number of the regions can be fixed very easily.

• The implementation for the parallelization is much easier.

5.6 A parallelizable method for finding the optimal solution

In this section we present a parallelizable method that can be applied when it is impor-
tant to get the global optimal solution. The method consists of two phases. In a first
phase, we construct locally upper and lower bounds as explained in 4.4.5. This phase
can be easily parallelized. During the first phase we maintain a global upper bound and
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Figure 5.9: Here the graph domain was divided at the beginning in four overlapping
regions A,B,C,D. To apply a merging path method we must find a merging
structure.

a global lower bound which can be deduced by combining the local upper and lower
bounds calculated. On points of the graph domain where the global upper bound equals
the global lower bound we can already fix the solution. The region of the graph domain
where we can fix the solution in this way is called fixed region. The other points are on
the non fixed region.

We try to obtain one of the following two situations during the first phase:

• The non fixed region consists of several regions that are not connected to each
other as illustrated in figure 5.10. In this case we continue the algorithm on every
such region separately.

• The reconstruction problem on the remaining vertices between the global upper
and lower bound can be solved by one computer. We therefore can stop the first
phase and pass to the second phase which consists of determining the solution
directly.

Theoretically it would be possible that we will never get in one of the two situations
described above. Fortunately, in practice this cases are extremely rare as the local upper
and lower bounds that we determine in the first phase often touch the optimal solution
as seen in 4.4.5. Therefore this technique allows in general to get the optimal solution
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Figure 5.10: B1, B2, B3, B4, B5 are zones in the non fixed region that are not connected
to each other. Thus they can be solved independently.

for very large problems. The drawback is that this method is very time consuming and
it is difficult to determine the computational time at the beginning.
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6 Code

In this chapter we will shortly discuss the code that is provided with this work. The
code is written in C++ and can be used as a library for solving reconstruction problems
with different of the proposed methods. Namely, we have implemented various flow
algorithms and capacity functions. Furthermore the proposed disparity reduction on
intervals is provided, as well as functions for applying the proposed pyramidal approach
and a simple parallelization method. Additionally, we introduced a format for handling
reconstruction solutions (the ≪dcm≫ format) and implemented different functions that
allow to manipulate solutions and save them under different formats (dcm, pts, or as an
image).

To simplify the use of some methods of high practical interest, we provide three pro-
grams. The main program is named rstereo.exe and allows to solve reconstruction
problems directly, or by parallelization. Also the pyramidal approach can be used with
this program for solving problems. It can be executed from a command line and takes one
argument, which is the name of an initialization file in which parameters corresponding
to the problem and the resolution method are specified. The file rstereo_template.ini
is a template of such an initialization file and explains how to enter the parameters and
use the program.

The second program dcm_to_boundary.exe allows to extract a horizontal or vertical
line of a solution and to save it in a file with the dcm format (information of how to use
this program can be found in the file dcm_to_boundary.cpp or simply by executing the
program without arguments). This file can be used later as boundary condition in the
rstereo.exe program (further explanations of how to introduce a boundary condition
can be found in the file rstereo_template.ini).

The third program we provide is named rcompare.exe and compares two solutions (in
dcm format) or images (in pgm format) and saves their difference as an image with pgm
format (information of how to use the program can be found in the file rcompare.cpp

or simply by executing the program without arguments).

Below, we give a listing of the modules we programmed with a short description.

rstereo.h/rstereo.cpp The principal module containing the main function.

global.h/global.cpp Module containing global constants and all preprocessor definitions
made. Here one can change the algorithm and capacity function that will be used.
Also the dumping of different comments can be activated and deactivated in this
module. For debugging, the DEBUG constant can be introduced which performs
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numerous tests for finding the first apparition of an irregular situation. DEBUG
should not be activated for the final compilation as it slows down the program.

exceptionhandling.h/exceptionhandling.cpp A module defining classes for exception
handling.

4x4matrixalgebra.h/4x4matrixalgebra.cpp Some algebraic manipulations of 4x4 matri-
ces are defined here. They are used for the projection of points to the images.

image.h/image.cpp Classes for images and reconstruction frameworks are defined here.

vertex1.h/vertex1.cpp Introduces a class for vertices.

flow1.h/flow1.cpp This is one of the most important modules. It defines a class for
reconstruction problems and the functions to solve them.

pyramidaldisparity.h/pyramidaldisparity.cpp Module where the proposed pyramidal ap-
proach is implemented.

parallelization.h/parallelization.cpp A parallelization algorithm using preliminary grid-
division of the graph domain and straight merging is defined here.

distancequeue.h/distancequeue.cpp Defines a data structure used by preflow-push al-
gorithms for calculating exact distances to the sink.

heightlist.h/heightlist.cpp Defines a data structure for an efficient implementation of
the gap heuristic.

heightstockage.h/heightstockage.cpp Defines a data structure for an efficient imple-
mentation of the wave algorithm.

verticeslist.h/verticeslist.cpp Data structure used by the growing-trees algorithm.

disparitycmap.h/disparitycmap.cpp Defines a class for working with solution.

ini.h/ini.cpp Defines a class for initialization files.

fibonacciheap.h/fibonacciheap.cpp Implementation of the Fibonacci heap (can be used
for the shortest path algorithm of Dijkstra).

dcm to boundary.cpp Here, the program dcm_to_boundary.exe is implemented and
explained.

rcompare.cpp Implementation of the program rcompare.exe and explanations for its
use.

More details about our code can be found as commentaries in the corresponding mod-
ules. For using our code as a library you can simply include the file ≪rstereo.h≫.

The software provided with this work contains furthermore a set of images and projec-
tion matrices that allow to test our code and the above mentioned programs. Further
information can be found in the file readme.txt.
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Conclusion

At first, different algorithms for the resolution of the minimum s − t cut problem on
reconstruction networks were studied theoretically and empirically. This allowed us to
determine the most promising algorithms for our problem. We introduced two pre-
processing algorithms speeding up some of the maximum flow algorithms on reconstruc-
tion networks.
Additionally, we developed a formulation that allows to impose disparity restrictions
on the problem and reduces the size of the network. In particular we can use this
formulation to impose internal and border conditions. The idea of using a pyramidal
approach discussed in [11] was improved by using the introduced disparity reduction
techniques. Furthermore, some interesting theoretical results for problems with internal
and border conditions were introduced. They are of practical importance in numerous
proposed methods.
We developed methods for parallelization allowing to tackle problems that were till now
untractable with the classical use of the s − t cut formulation. By combining these
methods with the proposed pyramidal approach we have not only reduced the compu-
tational time thanks to the parallelizing process but we also reduced the complexity of
the resolution method and still get very accurate solutions.
Finally we have written a code in C++ allowing to apply and test most of the proposed
methods and algorithms. This code can be used as a library for further work.

There are a lot of possibilities for continuing this work. A topic of practical interest
would be to develop methods for cutting the graph domain on regions where recon-
struction is simple. This would allow to improve the proposed parallelization methods
because the obtained subproblems have a smaller influence to each other. In particular
we can choose a very little overlapping width for the subproblems. It would also be
interesting to generalize and test the obtained results and algorithms on other types of
networks (usually not grid like) that are used for solving the reconstruction problem.

Finally, I would like to thank Professor Dominique de Werra, Tınaz Ekim and Pascal
Lagger for their help and assistance during the last months.
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